Capturing Oceanic Submesoscales, Stirring, and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
基本信息
- 批准号:MR/X035611/1
- 负责人:
- 金额:$ 324.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The global oceans act as a sponge, soaking up significant amounts of the excess heat and carbon that have been added to the atmosphere due to human activity. Our oceans therefore play a key role in buffering the magnitude of climate change. However, the future storage capacity of the ocean sponge is uncertain, alongside the distribution of nutrients and oxygen, key ingredients for a healthy marine ecosystem. To address these uncertainties, we need to better understand how the oceans flow deep below the surface layers - in particular current flows that span scales of tens of metres to hundreds of kilometers, otherwise known as submesoscales. Submesoscale currents matter because they provide a pathway to harness energy from the winds and tides and use it to stir and mix different water masses around the globe, along with the heat, carbon and nutrients that they carry. Despite their importance, little is known about ocean submesoscales because of their intermediate size and intermittent nature. This means they are both difficult to capture in nature or model with computers. In this project, my team will conduct a pioneering experiment that will capture for the first time the full range of current flows that exist beneath the surface ocean layers, alongside the mixing and stirring that they generate. A targeted sea-going programme using active acoustics will sample the ocean at unprecedented resolutions (two orders of magnitude better than other techniques) and fully capture submesoscale currents. Similar to how bats echo-locate, a ship at the surface releases sound pulses into the water and records reflections from water layers. Acoustic measurements will be combined for the first time with cutting-edge robotics, vessel-mounted and moored instrumentation. In parallel, state-of-the-art model simulations will be both validated and improved using our new ocean observation data. The result will be the most realistic representation of the sub-surface ocean to date. The simulations will be used to quantify submesoscale initiation, ubiquity and interactions, and assess their role in driving energy and property exchanges in the global ocean. The experiment will take place at a global hotspot of ocean activity: the Brazil-Malvinas Confluence off the coast of Argentina. Here sub-tropical waters from the Atlantic collide with polar waters from the Southern Ocean. Water mass exchanges at this confluence, which are likely driven by submesoscale currents, play a key role in the distribution of heat, salt, carbon and life sustaining nutrients and oxygen throughout the global oceans. By revealing interior ocean dynamics in unparalleled detail at the Brazil-Malvinas Confluence, COSSMoSS will shed light on a significant missing piece of the scientific ocean puzzle helping us to better understand our future biosphere and climate.
全球海洋就像一块海绵,吸收了大量由于人类活动而增加到大气中的多余热量和碳。因此,我们的海洋在缓冲气候变化幅度方面发挥着关键作用。然而,海洋海绵未来的储存能力以及营养物质和氧气的分布是不确定的,而营养物质和氧气是健康海洋生态系统的关键成分。为了解决这些不确定性,我们需要更好地了解海洋如何在表层以下深处流动-特别是跨越数十米至数百公里尺度的海流,也称为亚中尺度。亚中尺度水流很重要,因为它们提供了一条途径来利用风和潮汐的能量,并利用它来搅拌和混合地球仪周围不同的水团,以及它们所携带的热量、碳和营养物质,沿着。尽管它们的重要性,很少有人知道海洋中尺度下,因为它们的中间大小和间歇性的性质。这意味着它们都很难在自然界中捕获或用计算机建模。在这个项目中,我的团队将进行一项开创性的实验,首次捕捉海洋表层下存在的全部水流,以及它们产生的混合和搅拌。一个使用主动声学的有针对性的航海方案将以前所未有的分辨率(比其他技术好两个数量级)对海洋进行采样,并充分捕捉次中尺度海流。与蝙蝠回声定位类似,水面上的船只向水中释放声音脉冲,并记录水层的反射。声学测量将首次与尖端机器人技术、船上安装和系泊仪器相结合。与此同时,最先进的模型模拟将使用我们新的海洋观测数据进行验证和改进。其结果将是迄今为止最真实的地下海洋表现。这些模拟将用于量化次中尺度的启动、普遍存在和相互作用,并评估它们在推动全球海洋能量和财产交换方面的作用。实验将在全球海洋活动热点:阿根廷海岸外的巴西-马尔维纳斯汇流区进行。在这里,来自大西洋的亚热带沃茨与来自南大洋的极地沃茨相撞。这一交汇处的水团交换很可能是由次中尺度海流驱动的,在全球海洋的热、盐、碳和维持生命的营养物质和氧气的分布方面发挥着关键作用。通过以无与伦比的细节揭示巴西-马尔维纳斯汇合处的内部海洋动力学,COSSMoss将揭示科学海洋难题中重要的缺失部分,帮助我们更好地了解我们未来的生物圈和气候。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katy Sheen其他文献
Katy Sheen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katy Sheen', 18)}}的其他基金
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
EP/Y014693/1 - 财政年份:2024
- 资助金额:
$ 324.42万 - 项目类别:
Research Grant
Can you hear marine snow falling?
你能听到海上降雪的声音吗?
- 批准号:
NE/X009483/1 - 财政年份:2022
- 资助金额:
$ 324.42万 - 项目类别:
Research Grant
相似国自然基金
新质生产力视域下浙江海洋创新人才培育的体系建构与对策研究
- 批准号:2025C25048
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
海洋溶解CO2传感器应用于原位长期监测的适应性改进
- 批准号:MS25D060007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于钼和铊同位素的海相碳酸锰矿床成因探讨及其沉积古海洋环境意义
- 批准号:2025JJ60265
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
稀土稳定同位素制约珠江 口 向海洋的稀土传输
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
珠江口近岸海域初级生产力结构特征及其形成机制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于多传感器融合的高精度海洋磁场测
量方法与实验研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
海冰-海洋强耦合同化对极地海冰预测的
影响研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
海洋环境干扰下具有二阶非完整约束的
无人艇编队学习控制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
结合知识图谱的卫星互联网系统工程专业语言模型构建与研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多重低质约束的海洋智能无人感知系统多模态可信融合方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 324.42万 - 项目类别:
Continuing Grant
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
EP/Y014693/1 - 财政年份:2024
- 资助金额:
$ 324.42万 - 项目类别:
Research Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318851 - 财政年份:2024
- 资助金额:
$ 324.42万 - 项目类别:
Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318854 - 财政年份:2024
- 资助金额:
$ 324.42万 - 项目类别:
Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318853 - 财政年份:2024
- 资助金额:
$ 324.42万 - 项目类别:
Continuing Grant
Involvement of Developing Country Scientists in Activities of the Scientific Committee on Oceanic Research
发展中国家科学家参与海洋研究科学委员会的活动
- 批准号:
2346864 - 财政年份:2024
- 资助金额:
$ 324.42万 - 项目类别:
Continuing Grant
Unraveling oceanic multi-element cycles using single cell ionomics
使用单细胞离子组学揭示海洋多元素循环
- 批准号:
2875388 - 财政年份:2023
- 资助金额:
$ 324.42万 - 项目类别:
Studentship
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
- 批准号:
2234705 - 财政年份:2023
- 资助金额:
$ 324.42万 - 项目类别:
Continuing Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
- 批准号:
2234706 - 财政年份:2023
- 资助金额:
$ 324.42万 - 项目类别:
Continuing Grant
Characterization of Oceanic Storm Systems using Microseism
利用微震表征海洋风暴系统
- 批准号:
2243407 - 财政年份:2023
- 资助金额:
$ 324.42万 - 项目类别:
Standard Grant