Collaborative Research: NeTS-NBD: SCAN: Statistical Collaborative Analysis of Networks
协作研究:NeTS-NBD:SCAN:网络统计协作分析
基本信息
- 批准号:0721591
- 负责人:
- 金额:$ 26.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Communications networks increasingly rely on robust, accurate monitoring systems to help network operators detect disruptions, misconfigurations, and failures. Accurate monitoring techniques detect disruptions when they occur (with a negligible number of false alarms), and identify the source of the disruption, for example, the faulty network element, the source of unwanted traffic. Robust monitoring detects disruptions when measurements may be noisy, incomplete, or when attackers are actively trying to disguise their presence. Network monitoring is most accurate when distributed; that is, when it draws upon observations from a large number of vantage points. Monitoring is more robust when it is network-level; that is, when it can rely on properties of the network traffic, rather than on other features such as traffic content. The researchers are developing techniques for distributed, network-level monitoring and incorporating these techniques into a distributed data management system for detecting network disruptions in two areas: internal network faults and failures, and external threats and unwanted traffic.The research has three themes: (1) Online, distributed, detection algorithms; (2) Informed actuation that uses passive measurements as a baseline, judiciously choosing active measurements to issue in support of the passive measurements, (3) Incorporating these techniques into real-world systems to evaluate the practicality of the schemes and their applicability in realistic network monitoring settings. We will evaluate our algorithms in two settings: detection of internal network disruptions (e.g., failures, faults and misconfigurations within a single network, such as a campus or enterprise network); and fast detection of global threats (e.g. spam, botnets).
通信网络越来越依赖于强大、准确的监控系统来帮助网络运营商检测中断、错误配置和故障。 准确的监控技术可以在中断发生时检测到中断(错误警报的数量可以忽略不计),并识别中断的来源,例如,故障网络元件,不必要流量的来源。 当测量可能存在噪声、不完整或攻击者主动试图掩盖其存在时,强大的监控可以检测到中断。 网络监视在分布式时是最准确的;也就是说,当它从大量的Vantage位置进行观察时。当监控是网络级的时候,也就是说,当它可以依赖于网络流量的属性,而不是流量内容等其他功能时,监控会更加可靠。研究人员正在开发分布式网络级监控技术,并将这些技术整合到分布式数据管理系统中,以检测两个方面的网络中断:内部网络故障和失效,以及外部威胁和不必要的流量。(2)使用被动测量作为基线的知情致动,明智地选择主动测量以发布以支持被动测量,(3)将这些技术应用到实际系统中,以评估这些方案的实用性及其在实际网络监控环境中的适用性。 我们将在两种情况下评估我们的算法:检测内部网络中断(例如,故障、故障和配置错误);以及快速检测全球威胁(例如垃圾邮件、僵尸网络)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Guestrin其他文献
Multimedia Data Querying
多媒体数据查询
- DOI:
10.1007/978-0-387-39940-9_1039 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Cornelia Caragea;V. Honavar;P. Boncz;Per;Suzanne W. Dietrich;Gonzalo Navarro;B. Thuraisingham;Yan Luo;Ouri E. Wolfson;S. Beitzel;Eric C. Jensen;O. Frieder;C. S. Jensen;N. Tradisauskas;E. Munson;A. Wun;K. Goda;Stephen E. Fienberg;Jiashun Jin;Guimei Liu;Nick Craswell;T. Pedersen;Cesare Pautasso;M. Moro;S. Manegold;B. Carminati;Marina Blanton;S. Bouchenak;Noël de Palma;Wei Tang;C. Quix;M. Jeusfeld;R. K. Pon;David J. Buttler;Weiyi Meng;P. Zezula;Michal Batko;Vlastislav Dohnal;J. Domingo;Denilson Barbosa;I. Manolescu;Jeffrey Xu Yu;E. Cecchet;Vivien Quéma;Xifeng Yan;G. Santucci;D. Zeinalipour;P. Chrysanthis;Amol Deshpande;Carlos Guestrin;S. Madden;C. Leung;Ralf Hartmut Güting;Amarnath Gupta;Heng Tao Shen;G. Weikum;Ramesh Jain;Jeffrey Xu Yu;P. Ciaccia;K. Candan;M. Sapino;C. Meghini;Fabrizio Sebastiani;U. Straccia;F. Nack;V. S. Subrahmanian;Maria Vanina Martinez;D. Reforgiato;T. Westerveld;M. Sebillo;G. Vitiello;Maria De Marsico;K. Voruganti;C. Parent;S. Spaccapietra;C. Vangenot;Esteban Zimányi;Prasan Roy;S. Sudarshan;Enrico Puppo;Peer Kröger;M. Renz;H. Schuldt;Solmaz Kolahi;A. Unwin;W. Cellary - 通讯作者:
W. Cellary
Graphical Models and Overlay Networks for Reasoning about Large Distributed Systems
用于大型分布式系统推理的图形模型和覆盖网络
- DOI:
10.1184/r1/6718754.v1 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Carlos Guestrin;S. Funiak - 通讯作者:
S. Funiak
Information cartography
信息制图
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:22.7
- 作者:
Dafna Shahaf;Carlos Guestrin;E. Horvitz;J. Leskovec - 通讯作者:
J. Leskovec
Automatic Generation of Issue Maps: Structured, Interactive Outputs for Complex Information Needs
自动生成问题地图:满足复杂信息需求的结构化、交互式输出
- DOI:
10.1184/r1/6714929.v1 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Carlos Guestrin;Dafna Shahaf - 通讯作者:
Dafna Shahaf
Stochastic roadmap simulation for the study of ligand-protein interactions
用于研究配体-蛋白质相互作用的随机路线图模拟
- DOI:
10.1093/bioinformatics/18.suppl_2.s18 - 发表时间:
2002 - 期刊:
- 影响因子:5.8
- 作者:
M. Apaydin;Carlos Guestrin;C. Varma;D. Brutlag;J. Latombe - 通讯作者:
J. Latombe
Carlos Guestrin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Guestrin', 18)}}的其他基金
RI: Small: GraphLab 2: An Abstraction and System for Large-Scale Parallel Machine Learning on Natural Graphs
RI:小型:GraphLab 2:自然图上大规模并行机器学习的抽象和系统
- 批准号:
1218756 - 财政年份:2012
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
NGNI-Medium: Collaborative Research: MUNDO: Managing Uncertainty in Networks with Declarative Overlays
NGNI-Medium:协作研究:MUNDO:使用声明性覆盖管理网络中的不确定性
- 批准号:
1318441 - 财政年份:2012
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
RI: Small: GraphLab 2: An Abstraction and System for Large-Scale Parallel Machine Learning on Natural Graphs
RI:小型:GraphLab 2:自然图上大规模并行机器学习的抽象和系统
- 批准号:
1258741 - 财政年份:2012
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
NGNI-Medium: Collaborative Research: MUNDO: Managing Uncertainty in Networks with Declarative Overlays
NGNI-Medium:协作研究:MUNDO:使用声明性覆盖管理网络中的不确定性
- 批准号:
0803333 - 财政年份:2008
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
CAREER: Thinking that is "just right": Query-Specific Probabilistic Reasoning and its Application to Large-Scale Sensor Networks
职业:认为“恰到好处”:特定于查询的概率推理及其在大规模传感器网络中的应用
- 批准号:
0644225 - 财政年份:2006
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
NeTS-NOSS: SNI: A General and Robust Networking Architecture for Distributed Data Processing in Sensor Networks
NeTS-NOSS:SNI:传感器网络中分布式数据处理的通用且稳健的网络架构
- 批准号:
0625518 - 财政年份:2006
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
CSR-EHS: Collaborative Research: A General, Efficient and Robust Platform for Enabling Control Applications in Sensor Networks
CSR-EHS:协作研究:用于在传感器网络中实现控制应用的通用、高效且稳健的平台
- 批准号:
0509383 - 财政年份:2005
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312139 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant