Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
基本信息
- 批准号:2312978
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NextG cellular networks must support a wide variety of emerging applications, such as augmented reality, autonomous vehicles and remote healthcare, which require radio access with latency, throughput and reliability guarantees hitherto unavailable. Simultaneously, the wireless environment is becoming increasingly dynamic over diverse spectrum bands, user mobility and variable traffic patterns. Complex cross layer interactions imply tractable models are unavailable, and a machine learning approach to optimal resource utilization is critical. This project first develops an open, simple and capable platform, entitled EdgeRIC that supports fine-grain decision making at multiple timescales across the cellular network stack, and second, develops a structured machine learning based approach over this platform that optimally utilizes all system resources to maximize diverse application performance. The project is enhanced by an education plan focusing on machine learning and wireless networking and coordinating workshops and tele-seminars for the research community and industry professionals to disseminate their ideas. Simultaneously, outreach in the form of summer camps and seminars for high school students focusing on machine learning enhances the impact of this project in STEM fields.The project aims at enabling intelligent decision making and control in cellular networks at realtime ( 1ms), while supporting training and adaptation at near-realtime (10ms - 1s) and non-realtime ( 1s). It brings together mathematical methods to develop and analyze reinforcement learning (RL) algorithms and systems development to integrate them into the cellular stack. The project addresses the key challenges of doing so via three main themes. The first focuses on realtime RL algorithms that schedule resources based on the relative priorities of applications, using the structure of the optimal policy to promote fast and scalable learning. The second theme focuses on robust and fast adaptation of these policies, which must operate over dynamic environments and application needs. The third theme addresses scalable learning to determine hierarchical policies operating across the network layers and sites. The themes all come together on a platform, entitled EdgeRIC for implementing multi-modal learning algorithms using the standardized OpenAIGym toolkit. The immediate impact of this project is in creating multi-timescale learning and control for the next generation of cellular networks. This project also advances the fundamental theory of meta and federated RL. The project supports seminars and summer camps for outreach, development of new courses focusing on machine learning for wireless communication, and coordination of workshops and tele-seminars for the research community and industry professionals to disseminate research ideas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NextG蜂窝网络必须支持各种各样的新兴应用,如增强现实、自动驾驶汽车和远程医疗保健,这些应用需要具有延迟、吞吐量和可靠性保证的无线接入。同时,无线环境在不同的频谱带、用户移动性和不同的流量模式下变得越来越动态。复杂的跨层交互意味着可处理的模型不可用,机器学习方法来优化资源利用是至关重要的。该项目首先开发了一个开放、简单、功能强大的平台,名为EdgeRIC,支持跨蜂窝网络堆栈的多个时间尺度的细粒度决策,其次,在该平台上开发了一种基于结构化机器学习的方法,该方法可以最佳地利用所有系统资源,以最大限度地提高不同应用程序的性能。该项目通过一项教育计划得到加强,该计划侧重于机器学习和无线网络,并为研究界和行业专业人士协调研讨会和远程研讨会,以传播他们的想法。与此同时,以夏令营和研讨会的形式为高中生提供机器学习的推广,增强了该项目在STEM领域的影响力。该项目旨在实现蜂窝网络实时(1ms)的智能决策和控制,同时支持近实时(10ms - 1s)和非实时(1s)的训练和适应。它汇集了数学方法来开发和分析强化学习(RL)算法和系统开发,并将它们集成到蜂窝堆栈中。该项目通过三个主题解决了实现这一目标的关键挑战。第一个重点是实时强化学习算法,该算法基于应用程序的相对优先级调度资源,使用最优策略的结构来促进快速和可扩展的学习。第二个主题侧重于这些策略的健壮和快速适应,这些策略必须在动态环境和应用程序需求上运行。第三个主题涉及可扩展学习,以确定跨网络层和站点操作的分层策略。这些主题都汇集在一个名为EdgeRIC的平台上,该平台使用标准化的OpenAIGym工具包实现多模式学习算法。这个项目的直接影响是为下一代蜂窝网络创建多时间尺度的学习和控制。本项目还提出了元强化学习和联合强化学习的基本理论。该项目支持研讨会和夏令营的推广,开发以无线通信机器学习为重点的新课程,以及为研究界和行业专业人士协调研讨会和远程研讨会,以传播研究思想。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivas Shakkottai其他文献
Opportunities for Network Coding: To Wait or Not to Wait
网络编码的机会:等待还是不等待
- DOI:
10.1109/tnet.2014.2347339 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu;Navid Abedini;Natarajan Gautam;Alexander Sprintson;Srinivas Shakkottai - 通讯作者:
Srinivas Shakkottai
Srinivas Shakkottai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivas Shakkottai', 18)}}的其他基金
Collaborative Research: CPS: Medium: Empowering Prosumers in Electricity Markets Through Market Design and Learning
协作研究:CPS:中:通过市场设计和学习为电力市场的产消者赋权
- 批准号:
2038963 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Learning to Cache and Caching to Learn in High Performance Caching Systems
合作研究:CNS 核心:中:学习缓存以及在高性能缓存系统中学习缓存
- 批准号:
1955696 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
I-Corps: Residential Energy Management and Analytics
I-Corps:住宅能源管理和分析
- 批准号:
1848868 - 财政年份:2018
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
- 批准号:
1443891 - 财政年份:2014
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: RIPS Type 2: Strategic Analysis and Design of Robust and Resilient Interdependent Power and Communications Networks
合作研究:RIPS 类型 2:稳健且有弹性的相互依赖的电力和通信网络的战略分析和设计
- 批准号:
1440969 - 财政年份:2014
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CAREER: Beyond Akamai and BitTorrent: Information and Decision Dynamics in Content Distribution Networks
职业:超越 Akamai 和 BitTorrent:内容分发网络中的信息和决策动态
- 批准号:
1149458 - 财政年份:2012
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NSF Workshop on the Frontiers of Stochastic Systems, Networks and Control. The workshop will be held on October 27, 2012 at Texas A and M University
NSF 随机系统、网络和控制前沿研讨会。
- 批准号:
1235942 - 财政年份:2012
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Modeling, Design and Emulation of P2P Real-Time Streaming Networks
NeTS:媒介:协作研究:P2P 实时流网络的建模、设计和仿真
- 批准号:
0963818 - 财政年份:2010
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Designing a Content-Aware Internet Ecosystem
NeTS:媒介:协作研究:设计内容感知的互联网生态系统
- 批准号:
0904520 - 财政年份:2009
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
时间敏感型网络系统中面向确定性时延的端网协作传输机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于新生儿协作网的极早产儿全链条呼吸支持策略规范化应用研究
- 批准号:21Y21900800
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度学习和能量采集的无线体域网高能效技术研究
- 批准号:62001173
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
传感网水面污染视觉分析与协同监测技术研究
- 批准号:61973283
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
毫米波星群无线资源管理技术研究
- 批准号:61971054
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
无线异构网络中的协作频谱可信感知技术研究
- 批准号:61701167
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多自治水下机器人协作目标搜索控制研究
- 批准号:61773177
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:面上项目
基于异步协作频谱感知的认知异构网干扰控制与资源分配研究
- 批准号:61701134
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
面向无线传感网的低复杂度低能耗选择协作方法研究
- 批准号:61701065
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312139 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312834 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant