Collaborative Research: NeTS-NBD: SCAN: Statistical Collaborative Analysis of Networks
协作研究:NeTS-NBD:SCAN:网络统计协作分析
基本信息
- 批准号:0722077
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Communications networks increasingly rely on robust, accurate monitoring systems to help network operators detect disruptions, misconfigurations, and failures. Accurate monitoring techniques detect disruptions when they occur (with a negligible number of false alarms), and identify the source of the disruption, for example, the faulty network element, the source of unwanted traffic. Robust monitoring detects disruptions when measurements may be noisy, incomplete, or when attackers are actively trying to disguise their presence. Network monitoring is most accurate when distributed; that is, when it draws upon observations from a large number of vantage points. Monitoring is more robust when it is network-level; that is, when it can rely on properties of the network traffic, rather than on other features such as traffic content. The researchers are developing techniques for distributed, network-level monitoring and incorporating these techniques into a distributed data management system for detecting network disruptions in two areas: internal network faults and failures, and external threats and unwanted traffic.The research has three themes: (1) Online, distributed, detection algorithms; (2) Informed actuation that uses passive measurements as a baseline, judiciously choosing active measurements to issue in support of the passive measurements, (3) Incorporating these techniques into real-world systems to evaluate the practicality of the schemes and their applicability in realistic network monitoring settings. We will evaluate our algorithms in two settings: detection of internal network disruptions (e.g., failures, faults and misconfigurations within a single network, such as a campus or enterprise network); and fast detection of global threats (e.g. spam, botnets).
通信网络越来越依赖强大、准确的监控系统来帮助网络运营商检测中断、错误配置和故障。准确的监控技术在中断发生时进行检测(错误警报的数量可以忽略不计),并确定中断的来源,例如,故障网络元素,即不需要的流量的来源。强大的监控可在测量可能有噪音、不完整或攻击者主动试图掩盖其存在时检测到中断。网络监控在分布式时最准确;也就是说,当它利用来自大量有利位置的观察时。当监控处于网络级别时,即它可以依赖于网络流量的属性,而不是流量内容等其他功能时,监控更加可靠。研究人员正在开发分布式、网络级监控技术,并将这些技术整合到分布式数据管理系统中,用于检测两个领域的网络中断:内部网络故障和故障,以及外部威胁和不需要的流量。研究有三个主题:(1)在线、分布式、检测算法;(2)以被动测量为基准的知情激励,明智地选择主动测量来支持被动测量;(3)将这些技术整合到真实世界的系统中,以评估方案的实用性和它们在现实网络监控环境中的适用性。我们将在两个环境中评估我们的算法:检测内部网络中断(例如,单个网络中的故障、故障和错误配置);快速检测全球威胁(例如,垃圾邮件、僵尸网络)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Hellerstein其他文献
Applications Management — Current Practices, Research Results, and Future Directions
- DOI:
10.1023/a:1018743716746 - 发表时间:
1998-09-01 - 期刊:
- 影响因子:3.900
- 作者:
Paul Brusil;Joseph Hellerstein;Hanan Lutfiyya - 通讯作者:
Hanan Lutfiyya
Joseph Hellerstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Hellerstein', 18)}}的其他基金
III: Medium: Collaborative Research: Composing Interactive Data Visualizations
III:媒介:协作研究:构建交互式数据可视化
- 批准号:
1564351 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
NGNI-Medium: Collaborative Research: MUNDO: Managing Uncertainty in Networks with Declarative Overlays
NGNI-Medium:协作研究:MUNDO:使用声明性覆盖管理网络中的不确定性
- 批准号:
0803690 - 财政年份:2008
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
III-COR; Dynamic Meta-Compilation in Networked Information Systems
III-COR;
- 批准号:
0713661 - 财政年份:2007
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
ITR: Data on the Deep Web: Queries, Trawls, Policies and Countermeasures
ITR:深网数据:查询、拖网、政策和对策
- 批准号:
0205647 - 财政年份:2002
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Adaptive Dataflow: Eddies, SteMs and FLuX
自适应数据流:Eddies、SteMs 和 FLuX
- 批准号:
0208588 - 财政年份:2002
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
CONTROL for Data-Intensive Processing
数据密集型处理的控制
- 批准号:
9802051 - 财政年份:1998
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
CAREER: Generalized Search Technique for Indexing Complex Data
职业:索引复杂数据的通用搜索技术
- 批准号:
9703972 - 财政年份:1997
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312139 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant