CMG-Colllaborative Research: Multi-Scale (Wave Equation) Tomographic Imaging with USArray Waveform Data
CMG 合作研究:使用 USArray 波形数据进行多尺度(波方程)断层成像
基本信息
- 批准号:0724644
- 负责人:
- 金额:$ 37.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Seismic tomography refers to a broad class of techniques that aim to estimate spatial variations in the propagation speed of seismic waves in Earth's interior using information gleaned from seismograms recorded at Earth's surface. The concept has many aspects in common with medical applications, such as CAT imaging. Over the past decades global tomography has made significant progress with the imaging of Earth's large-scale, deep-interior structure. However, currently available techniques do not do a very good job in constraining Earth's structure on a wide range of length scales, which is a prerequisite for understanding the relationship between near-surface and deeper-mantle processes. Indeed, uneven data coverage and heterogeneous data quality often render non-unique, fuzzy images, with substantial spatial variation in reliability. The approximate nature of the 'red and blue' images impedes quantitative interpretation and keeps tomography from reaching its full potential as a probe of Earth's deep interior. This is particularly important in the context of EarthScope, a nationwide, multi-year geosciences project funded by the National Science Foundation. Its seismology component, USArray, has begun to provide spectacular broad-band data from dense distributions of seismograph stations, but to make optimal use of such data, that is, to construct the best possible models of the crust and mantle beneath North America, one needs to use better tomographic imaging methods than are available today. Traditional tomographic techniques use only a small part of the recorded data, for instance the arrival time or (filtered) waveform of a particular seismic wave. We need to improve our ability to interpret the broad-band wavefield excited by earthquakes (or other sources). From a geosciences point of view, we wish to have better images of mantle heterogeneity (including anisotropy) beneath North America and better understanding of the causative physical and chemical processes. From a physical point of view, this requires full consideration of how the elastic waves propagate in media with strong (and often non-smooth) heterogeneity. From a mathematical point of view this requires the use of more accurate wave-propagation theory (based on the wave equation) in order to capture this complexity, clever wavefield representation and model parameterization (for instance by means of curvelet frames) to allow faster computation in view of the massive size of modern (academic and industrial) data sets, and new statistics to estimate realistic uncertainties in the resulting depictions of Earth's sub-surface. Indeed, we must consider full wave dynamics in all steps on the trajectory from 'data' to 'image', including data representation, wave theory, parameterization, regularization, and uncertainty analysis.
地震层析成像是一种广泛的技术,旨在利用从地球表面记录的地震图中收集的信息来估计地震波在地球内部传播速度的空间变化。 该概念与医学应用有许多共同之处,例如CAT成像。 在过去的几十年里,全球层析成像技术取得了重大进展,对地球的大规模深层内部结构进行了成像。 然而,目前可用的技术并没有做一个很好的工作,约束地球的结构在一个广泛的长度尺度,这是一个先决条件,了解近地表和更深的地幔过程之间的关系。 事实上,不均匀的数据覆盖面和异构的数据质量往往呈现出非唯一的,模糊的图像,在可靠性方面有很大的空间差异。 “红色和蓝色”图像的近似性质阻碍了定量解释,并使层析成像技术无法充分发挥其作为地球深部探测器的潜力。 这一点在EarthScope这一由国家科学基金会资助的全国性多年期地球科学项目中尤为重要。 其地震学组成部分USAray已开始从密集分布的地震仪台站提供壮观的宽带数据,但要最佳利用这些数据,即构建北美地壳和地幔的最佳模型,需要使用比今天更好的层析成像方法。传统的层析成像技术仅使用所记录数据的一小部分,例如特定地震波的到达时间或(滤波)波形。 我们需要提高解释地震(或其他震源)激发的宽带波场的能力。 从地球科学的角度来看,我们希望有更好的图像地幔异质性(包括各向异性)在北美和更好地了解的物理和化学过程的成因。 从物理的角度来看,这需要充分考虑弹性波如何在具有强(通常是非光滑)非均匀性的介质中传播。 从数学的观点来看,这需要使用更精确的波传播理论(基于波动方程)为了捕捉这种复杂性,巧妙的波场表示和模型参数化(例如,通过曲波帧),以允许更快的计算,鉴于现代的巨大规模,(学术和工业)数据集和新的统计数据,以估计地球次表面的实际不确定性。 事实上,我们必须在从“数据”到“图像”的轨迹上的所有步骤中考虑完整的波动动力学,包括数据表示,波动理论,参数化,正则化和不确定性分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maarten de Hoop其他文献
原子間力顕微鏡を用いた化学研究
使用原子力显微镜进行化学研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Maarten de Hoop;Gen Nakamura and Jian Zhai;川井茂樹 - 通讯作者:
川井茂樹
Maarten de Hoop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maarten de Hoop', 18)}}的其他基金
Recovery of Material Parameters and Friction Laws Associated with Earthquakes, Interseismic Slip, and Tidal Deformation
恢复与地震、震间滑移和潮汐变形相关的材料参数和摩擦定律
- 批准号:
2108175 - 财政年份:2021
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Seismology- and Geodesy-Based Inverse Problems Crossing Scales, with Scattering, Anisotropy and Nonlinear Elasticity
基于地震学和大地测量学的跨尺度反问题,具有散射、各向异性和非线性弹性
- 批准号:
1815143 - 财政年份:2018
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Inverse Boundary Value Problems For Scalar and Elastic Waves: Stability Estimates and Iterative Reconstruction
标量波和弹性波的逆边值问题:稳定性估计和迭代重建
- 批准号:
1516061 - 财政年份:2015
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Inverse Boundary Value Problems For Scalar and Elastic Waves: Stability Estimates and Iterative Reconstruction
标量波和弹性波的逆边值问题:稳定性估计和迭代重建
- 批准号:
1559587 - 财政年份:2015
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography - from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:
1025318 - 财政年份:2010
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Collaborative Research: Stochastic and Multiscale Analysis of Ambient-Noise Generated Scattered Waves and Imaging
合作研究:环境噪声产生的散射波和成像的随机和多尺度分析
- 批准号:
0908450 - 财政年份:2009
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Collaborative Research: CSEDI--Multi-scale Analysis of Mantle Discontinuities Using Inverse Scattering of SS Waves and Experimental Mineral Physics
合作研究:CSEDI——利用SS波逆散射和实验矿物物理对地幔不连续性进行多尺度分析
- 批准号:
0757814 - 财政年份:2008
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Collaborative Research: Wave Equation Tomography and Data Assimilation: A New Approach to Estimating P and S Speed Variations in Earth's Lower Mantle
合作研究:波动方程断层扫描和数据同化:估计地球下地幔 P 和 S 速度变化的新方法
- 批准号:
0630493 - 财政年份:2005
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Collaborative Research: Anisotropy and Mantle Flow Beneath Japan from Seismological Observations and Geodynamical Modeling
合作研究:地震观测和地球动力学模拟的日本地下各向异性和地幔流
- 批准号:
0630494 - 财政年份:2005
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Collaborative Research-CMG: Development and Application of Inference Methods for Imaging Neighborhoods of Earth's Core-Mantle Boundary With Broad-Band Scs and SKKS Coda Waves
合作研究-CMG:宽带Scs和SKKS尾波成像地球核幔边界附近的推理方法的开发和应用
- 批准号:
0630492 - 财政年份:2005
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
相似海外基金
Colllaborative Research: CubeSat: Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD)
合作研究:CubeSat:相对论电子爆发强度、范围和动力学的集中研究(FIREBIRD)
- 批准号:
0838034 - 财政年份:2009
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant