Inverse Boundary Value Problems For Scalar and Elastic Waves: Stability Estimates and Iterative Reconstruction

标量波和弹性波的逆边值问题:稳定性估计和迭代重建

基本信息

  • 批准号:
    1516061
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

This project centers on inverse problems that enable innovative new technologies for interpreting the rich information contained in seismic wavefields. The results will fundamentally improve the ability to reconstruct highly heterogeneous geological media with structure from observational data. The nonlinear approaches that will be developed will yield possible discoveries of hitherto unknown substructures in our planet's interior, such as cracks and faults including the presence of fluids and the crust-mantle interface. On the one hand, more accurate mapping and characterization of shallow and deep mantle structures will facilitate integrated geological and geophysical studies, and may lead to more comprehensive models of Earth's dynamic interior. On the other hand, these methods will also aid in developing strategies for monitoring or identifying changes over time and benefit natural resources management. The results will also give important insight in how processes at the surface are coupled to processes in Earth's deep interior. The principal investigator and his colleagues will develop a comprehensive analysis of the seismic inverse boundary value problems in the time-harmonic and hyperbolic formulations. They consider Cauchy data and the Dirichlet-to-Neumann map or the Neumann-to-Dirichlet map as the data. The different formulations emphasize different 'features' of the data and lead to different conditions for stable recovery. The principal investigator and his colleagues will analyze in conjunction the inverse boundary value problems for the Helmholtz equation and the wave equation and their extensions to systems describing (time-harmonic) elastic waves. They plan to study global uniqueness in the case of time-harmonic elastic waves with coefficients containing conormal singularities (interfaces) and of limited smoothness. They will analyze conditions for Lipschitz stability of the relevant inverse maps with partial data. This will enable the team to obtain estimates for the stability constants, which leads to hierarchies of subspaces of coefficients, and develop a family of local iterative methods via the introduction of generalized variational source conditions. They also plan to develop resolvent estimates which provide a connection between the time-harmonic and hyperbolic formulations and analyze conditions for the unique recovery of piecewise smooth coefficients from high-frequency data. Finally, they will obtain a method of direct reconstruction of elastic parameters near the boundary (a free surface), and revisit the use of complex geometrical optics solutions in proofs of uniqueness theorems and adapt them to a framework of iterative regularization and reconstruction without very low frequencies in the data.
该项目的核心是反问题,使创新的新技术,解释地震波场中包含的丰富信息。该成果将从根本上提高从观测数据重建具有结构的高度非均匀地质介质的能力。将开发的非线性方法将可能发现我们星球内部迄今未知的子结构,如裂缝和断层,包括流体和壳幔界面的存在。一方面,更准确地绘制和描述浅地幔和深地幔结构将有助于综合地质和地球物理研究,并可能导致更全面的地球动态内部模型。另一方面,这些方法也将有助于制定战略,监测或查明随着时间的推移而发生的变化,并有利于自然资源管理。研究结果还将提供重要的洞察力,了解地表的过程如何与地球内部深处的过程相耦合。首席研究员和他的同事将开发一个全面的分析地震逆边值问题的时谐和双曲公式。他们认为柯西数据和狄利克雷到诺依曼映射或诺依曼到狄利克雷映射作为数据。不同的公式强调数据的不同“特征”,并导致稳定恢复的不同条件。主要研究者和他的同事将结合分析亥姆霍兹方程和波动方程的逆边值问题及其扩展到描述(时间谐波)弹性波的系统。他们计划研究全球唯一性的情况下,时间谐波弹性波的系数包含余法奇点(接口)和有限的光滑度。他们将分析条件的Lipschitz稳定性的相关逆映射的部分数据。这将使该团队能够获得稳定常数的估计,从而导致系数子空间的层次结构,并通过引入广义变分源条件来开发一系列局部迭代方法。他们还计划开发预解估计,提供时间谐波和双曲公式之间的联系,并分析从高频数据中唯一恢复分段平滑系数的条件。最后,他们将获得一种直接重建边界(自由表面)附近弹性参数的方法,并重新使用复杂的几何光学解决方案来证明唯一性定理,并使其适应迭代正则化和重建的框架,而不会在数据中出现非常低的频率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maarten de Hoop其他文献

原子間力顕微鏡を用いた化学研究
使用原子力显微镜进行化学研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maarten de Hoop;Gen Nakamura and Jian Zhai;川井茂樹
  • 通讯作者:
    川井茂樹

Maarten de Hoop的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maarten de Hoop', 18)}}的其他基金

Recovery of Material Parameters and Friction Laws Associated with Earthquakes, Interseismic Slip, and Tidal Deformation
恢复与地震、震间滑移和潮汐变形相关的材料参数和摩擦定律
  • 批准号:
    2108175
  • 财政年份:
    2021
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Seismology- and Geodesy-Based Inverse Problems Crossing Scales, with Scattering, Anisotropy and Nonlinear Elasticity
基于地震学和大地测量学的跨尺度反问题,具有散射、各向异性和非线性弹性
  • 批准号:
    1815143
  • 财政年份:
    2018
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Inverse Boundary Value Problems For Scalar and Elastic Waves: Stability Estimates and Iterative Reconstruction
标量波和弹性波的逆边值问题:稳定性估计和迭代重建
  • 批准号:
    1559587
  • 财政年份:
    2015
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography - from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
  • 批准号:
    1025318
  • 财政年份:
    2010
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic and Multiscale Analysis of Ambient-Noise Generated Scattered Waves and Imaging
合作研究:环境噪声产生的散射波和成像的随机和多尺度分析
  • 批准号:
    0908450
  • 财政年份:
    2009
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: CSEDI--Multi-scale Analysis of Mantle Discontinuities Using Inverse Scattering of SS Waves and Experimental Mineral Physics
合作研究:CSEDI——利用SS波逆散射和实验矿物物理对地幔不连续性进行多尺度分析
  • 批准号:
    0757814
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
CMG-Colllaborative Research: Multi-Scale (Wave Equation) Tomographic Imaging with USArray Waveform Data
CMG 合作研究:使用 USArray 波形数据进行多尺度(波方程)断层成像
  • 批准号:
    0724644
  • 财政年份:
    2007
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Equation Tomography and Data Assimilation: A New Approach to Estimating P and S Speed Variations in Earth's Lower Mantle
合作研究:波动方程断层扫描和数据同化:估计地球下地幔 P 和 S 速度变化的新方法
  • 批准号:
    0630493
  • 财政年份:
    2005
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Anisotropy and Mantle Flow Beneath Japan from Seismological Observations and Geodynamical Modeling
合作研究:地震观测和地球动力学模拟的日本地下各向异性和地幔流
  • 批准号:
    0630494
  • 财政年份:
    2005
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research-CMG: Development and Application of Inference Methods for Imaging Neighborhoods of Earth's Core-Mantle Boundary With Broad-Band Scs and SKKS Coda Waves
合作研究-CMG:宽带Scs和SKKS尾波成像地球核幔边界附近的推理方法的开发和应用
  • 批准号:
    0630492
  • 财政年份:
    2005
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Inverse Boundary Value Problems For Scalar and Elastic Waves: Stability Estimates and Iterative Reconstruction
标量波和弹性波的逆边值问题:稳定性估计和迭代重建
  • 批准号:
    1559587
  • 财政年份:
    2015
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
On a stability estimate for the identification of unknown inclusions for inverse boundary value problems
逆边值问题中未知夹杂物识别的稳定性估计
  • 批准号:
    15K17555
  • 财政年份:
    2015
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Inverse Boundary Value Problems with Incomplete Data
不完整数据的逆边值问题
  • 批准号:
    1109561
  • 财政年份:
    2011
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Inverse Boundary Value Problems in Partial Differential Equations
偏微分方程中的反边值问题
  • 批准号:
    1114944
  • 财政年份:
    2010
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Inverse Boundary Value Problems in Partial Differential Equations
偏微分方程中的反边值问题
  • 批准号:
    0807502
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Analysis of Anisotropic Inverse Boundary Value Problems
各向异性逆边值问题分析
  • 批准号:
    EP/F033974/1
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grant
Analysis of Anisotropic Inverse Boundary Value Problems
各向异性逆边值问题分析
  • 批准号:
    EP/F034016/1
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grant
Analytical and Computational Studies of Direct and Inverse Boundary Value Problems for PDEs
偏微分方程正、逆边值问题的分析和计算研究
  • 批准号:
    0604999
  • 财政年份:
    2006
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Analytical and computational studies of direct and inverse boundary value problems for PDEs
偏微分方程正向和逆边值问题的分析和计算研究
  • 批准号:
    0307119
  • 财政年份:
    2003
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Direct numerical solution to the inverse boundary-value problem of elliptic equations by using the adjoint variational method.
使用伴随变分法直接数值求解椭圆方程反边值问题。
  • 批准号:
    14540099
  • 财政年份:
    2002
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了