Fast Algorithms for Models of Incompressible Flow

不可压缩流模型的快速算法

基本信息

  • 批准号:
    0726017
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

FAST ALGORITHMS FOR MODELS OF INCOMPRESSIBLE FLOWHoward C. ElmanDepartment of Computer Science andInstitute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742This project concerns development, analysis and testing of efficient algorithms for solving systems of equations arising from models of flow of incompressible fluids. The development of such algorithms is of broad potential use for understanding scientific phenomena and constructing engineering tools involving fluid flows. Examples include biological flows such as blood flow in the heart or veins and arteries; dispersal of environmental pollutants in rivers or groundwater; design of microfluidics devices, which are used in diagnosis of diseases and identification of pathogens in fluids; and atmospheric and oceanic phenomena.Understanding such processes through purely experimental techniques is prohibitively expensive or impossible, whereas the use of modelling together with computational solution enables basic understanding of the physics by providing information about quantities such as flow rates, pressures, and concentrations of solvents. This research involves the development of fast computational algorithms that allows models to be resolved quickly and inexpensively by computer simulation.The research is focused on two classes of problems: algebraic eigenvalue problems that arise from analysis of the stability of solutions of the steady-state incompressible Navier-Stokes equations; and linear and nonlinear systems of equations that arise when thermal and chemical effects are coupled with models of incompressible flow. For both problem classes, discretization leads to the requirement to solve a sequence of large-scale linear systems of equations. We study efficient preconditioning techniques for these systems that take advantage of the structure of the problems. In addition to the impact on applied science, development of efficient solvers addresses fundamental mathematical and computational questions such as the impact of mathematical structure on algorithm development and the identification of stable flows in complex geometries.
不可压缩流体流动模型的快速算法在C.Elman计算机科学系和马里兰大学高级计算机研究所,MD 20742这个项目涉及高效算法的开发、分析和测试,用于求解由不可压缩流体流动模型产生的方程组。这种算法的发展在理解科学现象和构建涉及流体流动的工程工具方面具有广泛的潜在用途。例如生物流动,如心脏或静脉和动脉中的血液流动;环境污染物在河流或地下水中的扩散;用于诊断疾病和识别流体中病原体的微流体设备的设计;以及大气和海洋现象。通过纯粹的实验技术理解这些过程的成本高得令人望而却步,甚至不可能,而将建模与计算解结合使用,通过提供有关流量、压力和溶剂浓度等量的信息,使人们能够基本了解物理学。这项研究涉及到快速计算算法的发展,使得通过计算机模拟可以快速和廉价地求解模型。研究集中在两类问题:由稳态不可压缩Navier-Stokes方程的解的稳定性分析产生的代数特征值问题;以及当热和化学效应与不可压缩流动模型耦合时产生的线性和非线性方程组。对于这两类问题,离散化都需要求解一系列大规模的线性方程组。我们研究了这些系统的有效的预条件技术,利用问题的结构优势。除了对应用科学的影响外,高效求解器的开发还解决了基本的数学和计算问题,如数学结构对算法开发的影响和复杂几何形状中稳定流动的识别。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Howard Elman其他文献

Howard Elman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Howard Elman', 18)}}的其他基金

Reduced-Order and Low-Rank Methods for Parameter-Dependent Partial Differential Equations
参数相关偏微分方程的降阶和低秩方法
  • 批准号:
    1819115
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Computational Methods for Stochastic Eigenvalue Problems
随机特征值问题的计算方法
  • 批准号:
    1418754
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Computational Methods for Parameter-Dependent Partial Differential Equations
参数相关偏微分方程的计算方法
  • 批准号:
    1115317
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Algorithms for Discrete and Stochastic Partial Differential Equations
离散和随机偏微分方程的算法
  • 批准号:
    0208015
  • 财政年份:
    2002
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Preconditioning Techniques for Algebraic Equations Arising from Partial Differential Equations
由偏微分方程产生的代数方程的预处理技术
  • 批准号:
    9972490
  • 财政年份:
    1999
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Postdoc: Iterative Methods Arising in PDE's
博士后:偏微分方程中出现的迭代方法
  • 批准号:
    9704683
  • 财政年份:
    1997
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Numerical Solution of Algebraic Problems Arising in Fluids Models
数学科学:流体模型中出现的代数问题的数值解
  • 批准号:
    9423133
  • 财政年份:
    1995
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations
由偏微分方程导出的大型稀疏线性系统的迭代方法
  • 批准号:
    8818340
  • 财政年份:
    1989
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award: Research in Sparse Matrix Methods
总统青年研究员奖:稀疏矩阵方法研究
  • 批准号:
    8958544
  • 财政年份:
    1989
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Parallel Solution of Sparse Linear Systems Arising from Differential Equations
数学科学:微分方程稀疏线性系统的并行解
  • 批准号:
    8607478
  • 财政年份:
    1986
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
  • 批准号:
    2339978
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
  • 批准号:
    2342527
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
  • 批准号:
    2412147
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
  • 批准号:
    2329739
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
AI innovation in the supply chain of consumer packaged-goods for recognising objects in retail execution, supply chain management and smart factories: using novel diffusion-based optimisation algorithms and diffusion-based generative models
消费包装商品供应链中的人工智能创新,用于识别零售执行、供应链管理和智能工厂中的对象:使用新颖的基于扩散的优化算法和基于扩散的生成模型
  • 批准号:
    10081810
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Collaborative R&D
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
  • 批准号:
    2239787
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
  • 批准号:
    2239977
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Temporal Network Analysis: Models, Algorithms, and Applications
职业:时态网络分析:模型、算法和应用
  • 批准号:
    2236789
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
  • 批准号:
    2307573
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了