Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
基本信息
- 批准号:2329739
- 负责人:
- 金额:$ 50.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award will fund research that contributes to national prosperity and economic welfare by advancing data analytics and decision-making methods for enhancing the operational efficiency of the novel cooperative 3D printing (C3DP) technology. A critical barrier to the widespread adoption of additive manufacturing (AM) technologies has been slow printing speeds, leading to excessive printing times for large parts. C3DP utilizes a fleet of printhead-carrying mobile robots to perform printing jobs cooperatively, significantly improving scalability and reducing print time. Effective methods for operational control of these systems must consider the accuracy degradation of mobile printers, which can lead to cascading effects in product quality and production efficiency, as well as uncertain factors in the production process and are unsuitable for C3DP. This research will address these issues by providing innovative, integrated models and algorithms to improve the operational efficiency of C3DP. This project will also prepare the next generation of scientists and engineers by providing multidisciplinary research and training opportunities for K-12, undergraduate, and graduate students.The multidisciplinary team will incorporate AM, optimization, and stochastic models to achieve three specific research objectives: (1) Create an advanced mixed higher-order hidden Markov model for positional accuracy prediction of robot printers and inference of hidden conditions, facilitating timely maintenance of robot printers. (2) Develop a suite of stochastic optimization models using dynamic chance constraints for maintenance planning, production scheduling, and collision-free routing. (3) Validate and demonstrate the research methods through proof-of-concept experiments at their research labs, computational simulations, and collaborations with industrial partners. A simulator and a C3DP platform will be developed to validate and demonstrate the methods. Successful development of these models and algorithms will potentially transform AM into a new, ultra-efficient era of automated 3D printing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将资助通过推进数据分析和决策方法来提高新型合作3D打印(C3 DP)技术的运营效率,从而促进国家繁荣和经济福利的研究。 广泛采用增材制造(AM)技术的一个关键障碍是打印速度缓慢,导致大型零件的打印时间过长。C3 DP利用一组携带打印头的移动的机器人协同执行打印作业,显著提高了可扩展性并缩短了打印时间。这些系统的有效运行控制方法必须考虑移动的打印机的精度下降,这会导致产品质量和生产效率的级联效应,以及生产过程中的不确定因素,并且不适合C3 DP。本研究将通过提供创新的集成模型和算法来解决这些问题,以提高C3 DP的运营效率。该项目还将通过为K-12,本科生和研究生提供多学科研究和培训机会来培养下一代科学家和工程师。多学科团队将结合AM,优化和随机模型来实现三个具体的研究目标:(1)创建用于机器人打印机的位置精度预测和隐藏条件的推断的高级混合高阶隐马尔可夫模型,便于机器人打印机的及时维护。(2)开发一套使用动态机会约束的随机优化模型,用于维护计划、生产调度和无冲突路由。(3)通过在他们的研究实验室进行概念验证实验,计算模拟以及与工业合作伙伴的合作来验证和展示研究方法。将开发一个模拟器和C3 DP平台来验证和演示这些方法。这些模型和算法的成功开发将有可能将AM转变为自动化3D打印的超高效新时代。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yisha Xiang其他文献
Automatic Classification of Heartbeats Using ECG Signals via Higher Order Hidden Markov Model
通过高阶隐马尔可夫模型使用 ECG 信号对心跳进行自动分类
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ying Liao;Yisha Xiang;D. Du - 通讯作者:
D. Du
Modeling multivariate degradation data with dynamic covariates under a Bayesian framework
在贝叶斯框架下使用动态协变量对多元退化数据进行建模
- DOI:
10.1016/j.ress.2025.111115 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:11.000
- 作者:
Zhengzhi Lin;Xiao Liu;Yisha Xiang;Yili Hong - 通讯作者:
Yili Hong
Reliability modeling of correlated competitions and dependent components with random failure propagation time
具有随机故障传播时间的相关竞争和相关组件的可靠性建模
- DOI:
10.1002/qre.2609 - 发表时间:
2020-01 - 期刊:
- 影响因子:2.3
- 作者:
Liudong Xing;Guilin Zhao;Yujie Wang;Yisha Xiang - 通讯作者:
Yisha Xiang
Adaptive Opportunistic Maintenance for Multi-unit Systems Subject to Stochastic Degradation
遭受随机退化的多单元系统的自适应机会维护
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Zhicheng Zhu;Yisha Xiang;T. Jin;Mingyang Li - 通讯作者:
Mingyang Li
Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach
- DOI:
10.1016/j.ejor.2013.02.041 - 发表时间:
2013-09 - 期刊:
- 影响因子:0
- 作者:
Yisha Xiang - 通讯作者:
Yisha Xiang
Yisha Xiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yisha Xiang', 18)}}的其他基金
CAREER: Enhancing Environmental and Economic Sustainability of Additive Manufacturing-based Remanufacturing
职业:增强基于增材制造的再制造的环境和经济可持续性
- 批准号:
2305486 - 财政年份:2022
- 资助金额:
$ 50.58万 - 项目类别:
Standard Grant
CAREER: Enhancing Environmental and Economic Sustainability of Additive Manufacturing-based Remanufacturing
职业:增强基于增材制造的再制造的环境和经济可持续性
- 批准号:
1943985 - 财政年份:2020
- 资助金额:
$ 50.58万 - 项目类别:
Standard Grant
Collaborative Research: Maintenance Planning for Complex Systems in Dynamic Environments
协作研究:动态环境中复杂系统的维护规划
- 批准号:
1855408 - 财政年份:2018
- 资助金额:
$ 50.58万 - 项目类别:
Standard Grant
Collaborative Research: Maintenance Planning for Complex Systems in Dynamic Environments
协作研究:动态环境中复杂系统的维护规划
- 批准号:
1728257 - 财政年份:2017
- 资助金额:
$ 50.58万 - 项目类别:
Standard Grant
相似海外基金
Feasible Cooperative Zero Trust Framework for 5G
5G 可行的合作零信任框架
- 批准号:
49100422C0023 - 财政年份:2022
- 资助金额:
$ 50.58万 - 项目类别:
Contract
AI-based framework for drone intent classification using a non-cooperative radar system
使用非合作雷达系统进行无人机意图分类的基于人工智能的框架
- 批准号:
2744569 - 财政年份:2022
- 资助金额:
$ 50.58万 - 项目类别:
Studentship
Acceleration framework for training deep learning by cooperative with algorithms and computer architectures
通过与算法和计算机架构合作训练深度学习的加速框架
- 批准号:
21K17768 - 财政年份:2021
- 资助金额:
$ 50.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Practical Framework for the Formal Verification of Cooperative Mobile Robots Algorithms
协作移动机器人算法形式化验证的实用框架
- 批准号:
21K11748 - 财政年份:2021
- 资助金额:
$ 50.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How to establish x a regional cooperative framework for diseases preparedness and response in Asia?
如何建立亚洲疾病防备和应对区域合作框架?
- 批准号:
21K01349 - 财政年份:2021
- 资助金额:
$ 50.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: A Skill-Driven Cooperative Learning Framework for Cyber-Physical Autonomy
职业:技能驱动的网络物理自主合作学习框架
- 批准号:
2047010 - 财政年份:2021
- 资助金额:
$ 50.58万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: RUI: Synchronicity: A Framework for Synthesizing Concurrent Software from Sequential and Cooperative Specifications
SHF:小型:协作研究:RUI:同步性:根据顺序和协作规范合成并发软件的框架
- 批准号:
1812951 - 财政年份:2018
- 资助金额:
$ 50.58万 - 项目类别:
Standard Grant
Cooperative light-matter dynamics in the theoretical framework with radiation reaction
辐射反应理论框架中的协同光-物质动力学
- 批准号:
18K19065 - 财政年份:2018
- 资助金额:
$ 50.58万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
SHF: Small: Collaborative Research: Synchronicity: A Framework for Synthesizing Concurrent Software from Sequential and Cooperative Specifications
SHF:小型:协作研究:同步性:根据顺序和协作规范合成并发软件的框架
- 批准号:
1813133 - 财政年份:2018
- 资助金额:
$ 50.58万 - 项目类别:
Standard Grant
Coordination-based optimization framework for engineering systems design considering both individual and cooperative performance objectives
考虑个体和协作性能目标的基于协调的工程系统设计优化框架
- 批准号:
436193-2013 - 财政年份:2017
- 资助金额:
$ 50.58万 - 项目类别:
Discovery Grants Program - Individual