Active Depth Perception in Primates and Machines
灵长类动物和机器的主动深度感知
基本信息
- 批准号:0726901
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite the tremendous improvements in computational power of recent years, machine-vision systems are still far from replicating the efficiency, robustness, and speed of biological systems. A critical difference between organisms and machines lies in the acquisition of visual information. Unlike computers, biological vision systems are not passively exposed to the visual scene. Instead, they actively seek useful information by means of goal-directed behavior. It is a long-standing proposal that forging a tight link between behavior and perception may be critical for developing more efficient machine-vision algorithms. While examining a scene, humans coordinate eye movements with small movements of the head and body. Coordinated head/eye movements provide 3D information in the form of parallax, the different apparent motion of stationary objects at different distances. To examine the impact of this behavior in 3D vision, this project integrates computer modeling of the visual cortex with experiments in robotic vision and human psychophysics. The specific aims of this project are to: (a) measure the influence of coordinated head/eye movements on the accuracy of depth and distance judgments in human observers; (b) measure the 3D information resulting from head/eye movements by replicating human motor activity in an anthropomorphic robot; and (c) model the extraction and the autonomous calibration of the parallax resulting from head/eye movements in the parietal cortex of macaques. By coupling a neural model of the brain with a robot that replicates human behavior, this research establishes a direct link between human and machine vision studies. It has the potential of providing new insights on the brain as well as opening the way to the development of new algorithms in machine vision.
尽管近年来计算能力取得了巨大进步,但机器视觉系统仍远未复制生物系统的效率、稳健性和速度。 生物体和机器之间的一个关键区别在于视觉信息的获取。 与计算机不同,生物视觉系统不会被动地暴露于视觉场景。 相反,他们通过目标导向的行为积极寻找有用的信息。这是一个长期存在的提议,即在行为和感知之间建立紧密联系对于开发更高效的机器视觉算法可能至关重要。在检查场景时,人类会通过头部和身体的微小运动来协调眼球运动。 协调的头部/眼睛运动以视差的形式提供 3D 信息,即不同距离处静止物体的不同表观运动。 为了研究这种行为对 3D 视觉的影响,该项目将视觉皮层的计算机建模与机器人视觉和人类心理物理学的实验相结合。 该项目的具体目标是: (a) 测量协调的头部/眼睛运动对人类观察者深度和距离判断准确性的影响; (b) 通过在拟人机器人中复制人类运动活动来测量头部/眼睛运动产生的 3D 信息; (c) 对猕猴顶叶皮层中头部/眼睛运动产生的视差的提取和自主校准进行建模。 通过将大脑的神经模型与复制人类行为的机器人耦合起来,这项研究在人类和机器视觉研究之间建立了直接联系。它有潜力提供对大脑的新见解,并为机器视觉新算法的开发开辟道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Rucci其他文献
Neural network segmentation of magnetic resonance spin echo images of the brain.
大脑磁共振自旋回波图像的神经网络分割。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Stefano Cagnoni;G. Coppini;Michele Rucci;Davide Caramella;G. Valli - 通讯作者:
G. Valli
Michele Rucci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Rucci', 18)}}的其他基金
Center for Vision Science Symposium: Active Vision; Rochester, NY; June 2020
视觉科学中心研讨会:主动视觉;
- 批准号:
2013317 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Influence of Head and Eye Movements on Retinal Input and Early Neural Encoding
头部和眼睛运动对视网膜输入和早期神经编码的影响
- 批准号:
1836558 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Influence of Head and Eye Movements on Retinal Input and Early Neural Encoding
头部和眼睛运动对视网膜输入和早期神经编码的影响
- 批准号:
1457238 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
The Benefits of Self-Motion for Visual Perception
自动运动对视觉感知的好处
- 批准号:
1420212 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Influence of Head and Eye Movements on Visual Input Statistics and Early Neural Representations
头部和眼睛运动对视觉输入统计和早期神经表征的影响
- 批准号:
1127216 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Decorrelation of natural inputs in lateral geniculate nucleus of behaving monkeys
合作研究:行为猴外侧膝状核自然输入的去相关
- 批准号:
0843304 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Influence of Eye Movements on Visual Input Statistics and Early Neural Representations
眼动对视觉输入统计和早期神经表征的影响
- 批准号:
0719849 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
BIC: Eye movements and depth perception in primates and machines
BIC:灵长类动物和机器的眼球运动和深度知觉
- 批准号:
0432104 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
Biological Information Technology & Systems - BITS: Fixational Eye Movements in Biological and Artificial Vision Systems
生物信息技术
- 批准号:
0130851 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
The Development of VR Content to Evaluate Depth Perception Ability
开发评估深度感知能力的VR内容
- 批准号:
23K16928 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
MultiSensDepthPercep: Midbrain Circuits Underlying Multisensory Depth Perception
MultiSensDepthPercep:多感官深度知觉背后的中脑电路
- 批准号:
EP/X020924/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Depth perception in augmented reality
增强现实中的深度感知
- 批准号:
573365-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Segmentation and depth perception of naturalistic textures by human observers
人类观察者对自然纹理的分割和深度感知
- 批准号:
RGPIN-2017-05292 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Depth perception in virtual environments
虚拟环境中的深度感知
- 批准号:
562565-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Spatial Representations of Depth: Do Cognitive Maps Facilitate Depth Perception?
深度的空间表示:认知图是否有助于深度感知?
- 批准号:
2589432 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Segmentation and depth perception of naturalistic textures by human observers
人类观察者对自然纹理的分割和深度感知
- 批准号:
RGPIN-2017-05292 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual