Quantitative Characterization of Complex Motion Patterns Using Shape-based and Multivariate Techniques

使用基于形状和多元技术的复杂运动模式的定量表征

基本信息

项目摘要

The characterization of complex motion patterns in multisegmented biological organisms is typically achieved by the identification and measurement of task-related behaviors and the assessment of deviations from these normative behaviors. The basic hypothesis of this proposal is that there are systematic and quantifiable relationships between observed deviations in motion patterns and underlying physiological limitations. Currently available tools are largely unable to resolve these relationships as they primarily examine discrete events during a specific motion or are based on univariate statistical techniques. Thus, they fall short in quantifying spatiotemporally complex motion patterns and in detecting interactions across multiple segments and joints.The fundamental objective of this project is to establish a diagnostic, multivariate technique for characterizing complex motion patterns and correlating specific motion patterns with physiological conditions. Specifically, the proposed research will: (i) create an "Integrated Multivariate Motion Analysis" computational tool that combines shape-based analysis techniques with multivariate statistical tools to allow for improved quantification of complex motion patterns; (ii) benchmark the statistical technique against a library of task-specific lower-limb motion patterns generated using numerical optimization techniques applied to a simple mechanical model of the lower limb with unconstrained and constrained joint mobility; and (iii) establish the degree to which the statistical technique is able to identify the presence and degree of constraint in a set of controlled, experimental motion-captured data of human walking without and with braces that artificially constrain the movements at the knee or ankle. We expect that a successful outcome of the proposed effort will transform studies of gait and other complex motions. The tools developed from this project will significantly advance diagnostic capabilities, aid in the evaluation and treatment of movement conditions, and permit more accurate and comprehensive comparisons of segmental movements in a variety of taxa. These tools will lead to novel inferences about the complexity, performance, efficiency and health of biological and mechanical systems. This project also provides a multidisciplinary research and educational environment for faculty, graduate, and undergraduate students in engineering, anthropology, and psychology with interests in movement analysis, computational simulation of dynamical systems, and the statistical comparison of complex shapes at both the University of Illinois and Stockton College of New Jersey
多节段生物有机体中复杂运动模式的表征通常通过识别和测量任务相关行为以及评估与这些规范行为的偏差来实现。这个提议的基本假设是,在观察到的运动模式的偏差和潜在的生理限制之间存在系统的和可量化的关系。目前可用的工具在很大程度上无法解决这些关系,因为它们主要检查特定运动期间的离散事件或基于单变量统计技术。因此,他们在量化时空复杂的运动模式,并在检测跨多个段和joints.The的基本目标是建立一个诊断,多变量的技术特征复杂的运动模式和相关的特定运动模式与生理条件的相互作用不足。具体地说,所提出的研究将:(i)创建一个“集成多变量运动分析”计算工具,该工具将基于形状的分析技术与多变量统计工具相结合,以允许改进复杂运动模式的量化;(ii)将统计技术与一个特定任务的较低-使用数值优化技术生成的肢体运动模式,应用于具有无约束和约束关节活动性的下肢的简单力学模型;以及(iii)建立统计技术能够在不带和带人工约束膝盖或脚踝处的运动的支架的情况下识别人类行走的一组受控的实验运动捕获数据中约束的存在和程度的程度。我们期望,所提出的努力的成功结果将改变步态和其他复杂运动的研究。从这个项目开发的工具将显着提高诊断能力,在运动条件的评估和治疗援助,并允许更准确和全面的比较节段运动在各种类群。 这些工具将导致新的推论的复杂性,性能,效率和健康的生物和机械系统。该项目还为伊利诺伊大学和新泽西的斯托克顿学院的工程、人类学和心理学的教师、研究生和本科生提供了一个多学科的研究和教育环境,他们对运动分析、动力系统的计算模拟以及复杂形状的统计比较感兴趣

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Hsiao-Wecksler其他文献

Elizabeth Hsiao-Wecksler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Hsiao-Wecksler', 18)}}的其他基金

CAREER: Remote Control of Humanoid Robot Locomotion using Human Whole-body Movement and Mutual Adaptation
职业:利用人体全身运动和相互适应来远程控制人形机器人运动
  • 批准号:
    2043339
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NRI: INT: MiaPURE (Modular, Interactive and Adaptive Personalized Unique Rolling Experience)
NRI:INT:MiaPURE(模块化、交互式和自适应个性化独特滚动体验)
  • 批准号:
    2024905
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Genome-wide characterization of complex variants and their phenotypic effects in African populations
复杂变异的全基因组特征及其在非洲人群中的表型效应
  • 批准号:
    10721811
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Structural and biochemical characterization of VCPIP1 and VCP complex
VCPIP1 和 VCP 复合物的结构和生化表征
  • 批准号:
    10675974
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of Multidimensional Ion Mobility-Tandem Mass Spectrometry (IMSn-FT-ICR MSn) Tools for the Characterization of Complex Mixtures
开发用于表征复杂混合物的多维离子淌度串联质谱 (IMSn-FT-ICR MSn) 工具
  • 批准号:
    2304837
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Biochemical and structural characterization of the cell wall synthesis complex required for bacterial division
细菌分裂所需的细胞壁合成复合物的生化和结构表征
  • 批准号:
    10750639
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Functional Characterization of Mediator Complex Proteins in Neural Crest and Craniofacial Development
神经嵴和颅面发育中介导复合蛋白的功能表征
  • 批准号:
    10924358
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Characterization of the lens fiber cell tricellular junctional complex and its dependency on delta-catenin
晶状体纤维细胞三细胞连接复合体的表征及其对δ-连环蛋白的依赖性
  • 批准号:
    10738883
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-Molecular Characterization of Complex Matrices for the Detection of Geochemical Processes
用于地球化学过程检测的复杂基质的多分子表征
  • 批准号:
    RGPIN-2018-06147
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Characterization and Mapping of Mechanical Properties in Complex Materials and Geometries
复杂材料和几何形状中机械性能的表征和绘图
  • 批准号:
    RGPIN-2019-06660
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Characterization of critical differences between human and parasite respiratory complex II
人类和寄生虫呼吸复合物 II 之间关键差异的表征
  • 批准号:
    MR/W002221/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
  • 批准号:
    RGPIN-2017-05478
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了