NRI: INT: MiaPURE (Modular, Interactive and Adaptive Personalized Unique Rolling Experience)

NRI:INT:MiaPURE(模块化、交互式和自适应个性化独特滚动体验)

基本信息

项目摘要

Wheelchair design is essentially a chair supported between two large drive wheels with one or more casters and has changed little since the first U.S. patent awarded in 1869. Globally, the World Health Organization reports that approximately 65 million people need a wheelchair. The 2010 U.S. Census indicated that there were 3.6 million wheelchair users over the age of 15 in the U.S. Limitations exist to current manual wheelchair design. Notably, daily manual chair propulsion contributes to long-term overuse injuries to shoulders and wrists, and because the hands are occupied with propulsion, access to life experiences such as holding a loved one’s hand on a walk are compromised. Other life experiences remain largely inaccessible as well, such as easily and safely navigating a variety of outdoor terrains without risk of falling (gravel, rocks, grass, sand, snow) and accessing tight spaces such as restroom stalls and airplane aisles. Powered wheelchairs address some of these limitations; however, they are heavy and large, which also limit use in tight spaces and require ramp/lift-equipped vehicles for transport. Most wheelchair users with sufficient upper limb functionality will not use powered wheelchairs due to their substantial weight, runtime limitations, larger size, and greater cost. A disruptive approach for achieving the rolling mobility of people with lower-limb disability is needed. This project envisions breaking the mold of the traditional wheelchair through exploration of a safe, compact, adaptive ball-based robot (ballbot), where the rider sits on a sleek modular robot that is driven by a single large ball. Robot movement and speed are managed hands-free by gently leaning the torso in the desired direction. The use of a single spherical wheel (a ball) allows for unique movement in any direction, or "omnidirectional” movement. Due to the sleek design of the ballbot architecture, the robot’s footprint will be approximately the size of a seated person and the height of a chair. User-centered design and user experience principles will be observed throughout prototype development by incorporating input from focus groups to allow for iterative adjustments. This embodiment creates an ideal ubiquitous collaborative human-robot relationship that seamlessly integrates this co-robot into the user's everyday life. This project will also provide educational opportunities to bring design thinking, focused specifically on design for disability, to university courses and high school engineering summer camps. A dedicated Disability Design Maker-Lab will be created within the U.S. Paralympic Training Center at the University of Illinois at Urbana-Champaign to provide these students, and those across the campus, with an immersive and empathic exposure to real-world application and individuals with physical disability.MiaPURE is a Modular, Interactive and Adaptive collaborative robot that will provide a Personalized Unique Rolling Experience for each user. MiaPURE explores a common omnidirectional ballbot platform with multiple human-robot interfaces for modular and adaptive design configurations and input control. The primary goal is to improve upon hardware and control of self-balancing ball-based robots to allow for a safe, compact, and intuitive mobility device for people with lower-limb disability. This riding ballbot will feature omnidirectional, hands-free movement and ability to adapt to users of different sizes and trunk functional ability in a variety of environments. A secondary goal is to exploit modularity to envision easy conversion into a companion robot capable of supporting substantial top-heavy payloads (including up to the weight of an adult human). Both design configurations utilize a common ballbot drivetrain, which will be a sharable testbed allowing others to explore ballbot research questions. Customizable and scalable design needs will be explored to accommodate different users in complex environments. Two input control modes propelling either device configuration will be developed: (1) direct physical interaction (leaning of the torso while riding or pushing/pulling the companion ballbot), and (2) remote commands using an input device (e.g., joystick, gesture control). Advanced driving assistance such as obstacle avoidance and semi-autonomous navigation between predefined indoor locations will also be investigated. Specifically, this project will construct a third-generation prototype. In the first aim, the project will examine issues related to human-robot interfaces to allow for intuitive and organic user interfaces. The second and third aim will address low-level and higher-level robotic control, respectively. The technological approaches explored in this project can be applicable to making a realizable family of ballbots to address a variety of use cases and stakeholders (consumers, healthcare, workforce, and/or defense).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
轮椅设计本质上是一把支撑在两个带有一个或多个轮脚的大驱动轮之间的椅子,自1869年授予第一项美国专利以来几乎没有变化。据世界卫生组织统计,全球约有6500万人需要轮椅。2010年美国人口普查显示,美国有360万15岁以上的轮椅使用者。值得注意的是,日常的手动座椅推进力会导致肩部和手腕的长期过度使用损伤,并且由于双手被推进力占据,因此无法获得生活体验,例如在散步时握住爱人的手。其他的生活体验在很大程度上也是无法获得的,例如轻松安全地在各种户外地形中航行而没有摔倒的风险(砾石,岩石,草地,沙子,雪)以及进入厕所隔间和飞机过道等狭窄空间。电动轮椅解决了其中的一些限制;然而,它们又重又大,这也限制了在狭小空间中的使用,并且需要配备坡道/升降机的车辆进行运输。大多数具有足够上肢功能的轮椅使用者不会使用电动轮椅,因为它们的重量很大,运行时间限制,尺寸更大,成本更高。需要一种破坏性的方法来实现下肢残疾人的滚动移动。该项目设想通过探索一种安全、紧凑、自适应的基于球的机器人(ballbot)来打破传统轮椅的模式,其中骑手坐在由单个大球驱动的光滑模块化机器人上。机器人的运动和速度是通过轻轻地将躯干向所需的方向倾斜来管理的。使用单个球形轮(球)允许在任何方向上进行独特的运动,或“全向”运动。由于球形机器人架构的圆滑设计,机器人的足迹将大约是一个坐着的人的大小和一把椅子的高度。以用户为中心的设计和用户体验原则将在整个原型开发过程中得到遵守,方法是结合焦点小组的意见,以便进行迭代调整。该实施例创建了理想的无处不在的协作式人类-机器人关系,其将该协作机器人无缝地集成到用户的日常生活中。该项目还将提供教育机会,将设计思维,特别是针对残疾人的设计,带入大学课程和高中工程夏令营。在伊利诺伊大学厄巴纳-香槟分校的美国残奥会训练中心内将创建一个专门的残疾人设计创客实验室,为这些学生和校园内的学生提供身临其境的和移情的接触现实世界的应用程序和身体残疾的个人。MiaPURE是一个模块化的,交互式的和自适应的协作机器人,将为每个用户提供个性化的独特滚动体验。MiaPURE探索了一个通用的全向球形机器人平台,具有多个人机界面,可实现模块化和自适应设计配置和输入控制。主要目标是改进自平衡球型机器人的硬件和控制,为下肢残疾人提供安全、紧凑和直观的移动设备。这款骑行型球形机器人将具有全方位、免提运动的特点,能够适应不同体型的用户,并在各种环境中发挥躯干功能。第二个目标是利用模块化来设想容易转换成能够支持大量头重脚轻的有效载荷(包括高达成年人的重量)的伴侣机器人。这两种设计配置都使用了一个共同的球形机器人传动系统,这将是一个共享的测试平台,允许其他人探索球形机器人的研究问题。将探索可定制和可扩展的设计需求,以适应复杂环境中的不同用户。将开发两种输入控制模式来推动任一设备配置:(1)直接物理交互(在骑乘或推/拉同伴球形机器人时躯干的倾斜),以及(2)使用输入设备的远程命令(例如,操纵杆、手势控制)。还将研究先进的驾驶辅助,如避障和预定义室内位置之间的半自主导航。具体来说,该项目将构建第三代原型。在第一个目标中,该项目将研究与人机界面相关的问题,以实现直观和有机的用户界面。第二个和第三个目标将分别解决低级和高级机器人控制。该项目中探索的技术方法可用于制造可实现的球形机器人系列,以解决各种用例和利益相关者(消费者,医疗保健,劳动力和/或国防)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A CNN Based Vision-Proprioception Fusion Method for Robust UGV Terrain Classification
  • DOI:
    10.1109/lra.2021.3101866
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Chen, Yu;Rastogi, Chirag;Norris, William R.
  • 通讯作者:
    Norris, William R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Hsiao-Wecksler其他文献

Elizabeth Hsiao-Wecksler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Hsiao-Wecksler', 18)}}的其他基金

CAREER: Remote Control of Humanoid Robot Locomotion using Human Whole-body Movement and Mutual Adaptation
职业:利用人体全身运动和相互适应来远程控制人形机器人运动
  • 批准号:
    2043339
  • 财政年份:
    2021
  • 资助金额:
    $ 149.95万
  • 项目类别:
    Standard Grant
Quantitative Characterization of Complex Motion Patterns Using Shape-based and Multivariate Techniques
使用基于形状和多元技术的复杂运动模式的定量表征
  • 批准号:
    0727083
  • 财政年份:
    2007
  • 资助金额:
    $ 149.95万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

INT-ACT: Intangible Cultural Heritage, Bridging The Past, Present And Future
INT-ACT:非物质文化遗产,连接过去、现在和未来
  • 批准号:
    10102226
  • 财政年份:
    2024
  • 资助金额:
    $ 149.95万
  • 项目类别:
    EU-Funded
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 149.95万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 149.95万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 149.95万
  • 项目类别:
    Standard Grant
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
  • 批准号:
    517959-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 149.95万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
  • 批准号:
    10700105
  • 财政年份:
    2022
  • 资助金额:
    $ 149.95万
  • 项目类别:
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
  • 批准号:
    10601189
  • 财政年份:
    2022
  • 资助金额:
    $ 149.95万
  • 项目类别:
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
  • 批准号:
    517959-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 149.95万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 149.95万
  • 项目类别:
NRI: INT: Self-Assembly of Modular Robots Constructed using DNA: Modeling and Manufacturing Nanostructures with Graph Neural Networks and DNA Origami
NRI:INT:使用 DNA 构建的模块化机器人的自组装:使用图神经网络和 DNA 折纸建模和制造纳米结构
  • 批准号:
    2132886
  • 财政年份:
    2021
  • 资助金额:
    $ 149.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了