Collaborative Research: PACE-Parallel Accelerated Cartesian Expansions with Application to Molecular Dynamics
合作研究:PACE 并行加速笛卡尔展开式及其在分子动力学中的应用
基本信息
- 批准号:0729157
- 负责人:
- 金额:$ 20.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-10-01 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computation of pairwise potential functions is crucial, albeit computationally expensive, to simulating the underlying physics in many fields. To mitigate this cost, fast and approximate potential computation methods have been developed for several potential functions; for example, particle-mesh methods, Fast Fourier Transforms, Fast Multipole Method (FMM), and limiting computation to neighborhoods. These methods differ in efficiency, accuracy, and applicability. Recent work by one of the PIs provides the foundation for the development of unified, robust, accurate and parallel methods for fast computation of non-oscillatory potentials using the Accelerated Cartesian Expansion framework. A two pronged approach undertaken herein involves the development of (i) translation operators to enable FMM based computation for different pairwise potentials, including Yukawa, Lennard Jones, Gauss, Morse, and Buckingham potentials, and (ii) parallel framework for computing individual and multiple potentials simultaneously. These techniques are to be applied to a set of practical systems involving the Poisson, diffusion, retarded and Helmholtz (sub-wavelength), and Klein-Gordon equations, and to computing van-der Waals (in mesoscopic systems). The underlying methodology requires that only translation operators change from potential to potential, and provides a mathematically exact formulation for traversal up and down the FMM tree. The unifying treatment for computing multiple potentials simplifies parallel code development, especially with regard to scalability. To ensure broad impact, portions of this research will be available as part of LAMMPS software package to ensure widespread dissemination. Graduate students will be trained across multiple disciplines, and will visit each other's institutions. Existing channels are utilized to recruit women and minorities and undergraduate students are involved through senior design projects and potential REU supplements.
成对势函数的计算对于模拟许多领域的基础物理至关重要,尽管计算成本很高。为了减轻这种成本,已经为多个势函数开发了快速且近似的势计算方法;例如,粒子网格方法、快速傅立叶变换、快速多极子方法 (FMM) 以及将计算限制为邻域。这些方法在效率、准确性和适用性方面有所不同。一位 PI 最近的工作为开发统一、稳健、准确和并行的方法奠定了基础,以便使用加速笛卡尔展开框架快速计算非振荡势。这里采用的双管齐下的方法涉及开发(i)平移算子,以便能够对不同的成对势进行基于 FMM 的计算,包括 Yukawa、Lennard Jones、Gauss、Morse 和 Buckingham 势,以及(ii)用于同时计算单个和多个势的并行框架。这些技术将应用于一组涉及泊松、扩散、延迟和亥姆霍兹(亚波长)方程以及克莱因-戈登方程的实际系统,以及计算范德华(在介观系统中)。底层方法要求只有翻译算子从潜在到潜在的变化,并为 FMM 树的上下遍历提供了数学上精确的公式。计算多个势的统一处理简化了并行代码开发,特别是在可扩展性方面。为了确保广泛的影响,本研究的部分内容将作为 LAMMPS 软件包的一部分提供,以确保广泛传播。研究生将接受跨学科的培训,并将参观彼此的院校。利用现有渠道招募女性和少数族裔,本科生通过高级设计项目和潜在的 REU 补充参与其中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shanker Balasubramaniam其他文献
Stable and Accurate Marching-on-in-Time Solvers of Time Domain EFIE, MFIE, and CFIE Based on Quasi-Exact Integration Technique
基于准精确积分技术的时域EFIE、MFIE和CFIE稳定准确的时间步进求解器
- DOI:
10.1109/tap.2020.3026867 - 发表时间:
2021-04 - 期刊:
- 影响因子:5.7
- 作者:
Wang Xin;Shi Yifei;Lu Mingyu;Shanker Balasubramaniam;Michielssen Eric;Bagci Hakan - 通讯作者:
Bagci Hakan
Shanker Balasubramaniam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shanker Balasubramaniam', 18)}}的其他基金
Subdivision Based Isogeometric Analysis driven Electro-Acoustic Design
基于细分的等几何分析驱动的电声设计
- 批准号:
1725278 - 财政年份:2017
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
An Adaptive and Robust Discrete Geometry Based Helmholtz Solver and Applications to Device Design
基于亥姆霍兹求解器的自适应鲁棒离散几何及其在设备设计中的应用
- 批准号:
1250261 - 财政年份:2012
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
AF: :Small: Parallel Transient Solvers for Multiscale Electromagnetics Simulation
AF: :Small:用于多尺度电磁仿真的并行瞬态求解器
- 批准号:
1018516 - 财政年份:2010
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Fast and Accurate Integral Equation Solvers for Mixed-scale Electromagnetic Simulation
用于混合尺度电磁仿真的快速准确积分方程求解器
- 批准号:
0811197 - 财政年份:2008
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
NER: Nanowire Based Plasmonic Bioprobes/sensors
NER:基于纳米线的等离子体生物探针/传感器
- 批准号:
0609192 - 财政年份:2006
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: Parallel Hybrid Differential and Integral Equation Based Solvers for Time Domain Electromagnetic Analysis with Application to High-Speed Circuits
合作研究:基于并行混合微分方程和积分方程的求解器,用于时域电磁分析及其在高速电路中的应用
- 批准号:
0306436 - 财政年份:2003
- 资助金额:
$ 20.52万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Calibrating the Pace of Paleotropical Environmental and Ecological Change During Earth’s Previous Icehouse
合作研究:校准地球以前的冰库期间古热带环境和生态变化的步伐
- 批准号:
2221050 - 财政年份:2022
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: Calibrating the Pace of Paleotropical Environmental and Ecological Change During Earth’s Previous Icehouse
合作研究:校准地球以前的冰库期间古热带环境和生态变化的步伐
- 批准号:
2219947 - 财政年份:2022
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: Calibrating the Pace of Paleotropical Environmental and Ecological Change During Earth’s Previous Icehouse
合作研究:校准地球以前的冰库期间古热带环境和生态变化的步伐
- 批准号:
2219902 - 财政年份:2022
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
- 批准号:
2207616 - 财政年份:2022
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
- 批准号:
2207615 - 财政年份:2022
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Structural Characteristics and the Pace of Scientific Advance
EAGER:合作研究:结构特征和科学进步的步伐
- 批准号:
1646459 - 财政年份:2016
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: Accelerating the pace of research and implementation of Writing-to-Learn pedagogies across STEM disciplines
协作研究:加快跨 STEM 学科的“从写作到学习”教学法的研究和实施步伐
- 批准号:
1525602 - 财政年份:2015
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: Accelerating the pace of research and implementation of Writing-to-Learn pedagogies across STEM disciplines
协作研究:加快跨 STEM 学科的“从写作到学习”教学法的研究和实施步伐
- 批准号:
1524814 - 财政年份:2015
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: Accelerating the pace of research and implementation of Writing-to-Learn pedagogies across STEM disciplines
协作研究:加快跨 STEM 学科的“从写作到学习”教学法的研究和实施步伐
- 批准号:
1524967 - 财政年份:2015
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant
Collaborative Research: LTREB Renewal: Impacts of insect herbivory on the pace and pattern of primary successional change at Mount St. Helens
合作研究:LTREB 更新:昆虫食草对圣海伦斯山初级演替变化的速度和模式的影响
- 批准号:
1257306 - 财政年份:2013
- 资助金额:
$ 20.52万 - 项目类别:
Standard Grant