Magnetic Correlations and Quantum Critical Points

磁关联和量子临界点

基本信息

  • 批准号:
    0732294
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-01-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

This individual investigator award supports experimental investigations to explore the spatial and temporal correlations near magnetic phase transitions, which are tuned to zero temperature by compositional variation, pressure, or magnetic field. A combination of neutron scattering with lab-based heat capacity, magnetization, and electrical transport studies will be used. Previous work focused on materials where the interplay of local moment and itinerant moment magnetism is thought to lead to the formation of the zero temperature phase transition. This project will explore the quantum critical behaviors of two systems where the magnetism is predominantly itinerant: the T=0 quantum antiferromagnet Cr0.966V0.0034, and the ferromagnet Zr0.95Nb0.05Zn2. The second theme of the proposal is the synthesis of novel Kondo lattice ferromagnets from the Ce and Yb based equiatomic intermetallic series, especially the generation of ferromagnetic quantum critical points that can be tuned by pressure or magnetic field. The stability of ferromagnetic order and the process of moment compensation as the exchange interaction and carrier density are modified will be assessed. This project makes extensive use of national research facilities, and the students and postdocs involved in the research will be well prepared to become effective future users of these facilities. Further, they will be trained in single crystal synthesis techniques, an increasingly scarce but valuable research specialty. Our primary interest is to understand the ways in which magnetism can be stabilized or alternatively suppressed by modifications to the composition and structure of magnetic materials, an issue that is central to the rational design of new classes of magnetic materials. All magnets ultimately lose their magnetic properties at sufficiently large temperatures, undergoing a phase transition from a low temperature state where the magnetic moments of the constituent atoms are aligned and static, to a high temperature state where the moments fluctuate and point in random directions. By analogy to more familiar phase transitions, such as the melting of ice into water, much is known about the way in which these moments begin to align or order with reduced temperature, first on short length scales and for short times, but ultimately over the entire sample and for arbitrarily long times. This project addresses the most extreme magnets: those that become magnetic in the limit of zero temperature. Unlike materials that become magnetic at higher temperatures, the fluctuations of the magnetic moments near but above zero temperature are due to their quantum mechanical nature. This project seeks to characterize this sort of quantum magnetic phase transition. It will use a variety of experimental techniques combining neutron scattering with magnetic, thermal, and electrical transport measurements. Synthesis of new families of these quantum magnets is central to this effort, while high pressures and high magnetic fields will be used to tune magnetic transitions to zero temperature. This project makes extensive use of national research facilities, including the National High Magnetic Field Laboratory and the neutron scattering centers at NIST, Oak Ridge, and Argonne National Laboratories. Students and postdocs trained under this project will be expert future users for these facilities, as well as being conversant in the synthesis of novel bulk correlated electron systems, a rare but highly valued experimental skill.
该个人研究者奖支持实验研究,以探索磁相变附近的空间和时间相关性,磁相变可以通过成分变化、压力或磁场调谐到零温度。将使用中子散射与实验室热容量、磁化和电输运研究相结合的方法。以前的工作集中在局部矩和流动矩磁的相互作用被认为导致零度相变形成的材料上。本项目将探索两个系统的量子临界行为,其中磁性主要是流动的:T=0量子反铁磁体Cr0.966V0.0034和铁磁体Zr0.95Nb0.05Zn2。该提案的第二个主题是由Ce和Yb基等原子金属间系合成新型近藤晶格铁磁体,特别是可以通过压力或磁场调谐的铁磁量子临界点的产生。对交换相互作用和载流子密度改变后的铁磁序稳定性和力矩补偿过程进行了评价。本项目广泛使用国家科研设施,参与研究的学生和博士后将为将来成为这些设施的有效使用者做好充分准备。此外,他们将接受单晶合成技术的培训,这是一个越来越稀缺但有价值的研究专业。我们的主要兴趣是了解通过改变磁性材料的组成和结构来稳定或抑制磁性的方法,这是合理设计新型磁性材料的核心问题。在足够高的温度下,所有磁铁最终都会失去磁性,经历从组成原子的磁矩排列静止的低温状态到磁矩波动并指向随机方向的高温状态的相变。通过类比更熟悉的相变,如冰融化成水,我们对这些时刻如何随着温度的降低而开始排列或排序有了很多了解,首先是在短长度尺度上和短时间内,但最终是在整个样品上和任意长时间内。这个项目解决了最极端的磁铁:那些在零温度极限下变得磁性的磁铁。与在高温下变得磁性的材料不同,磁矩在接近零度但高于零度的波动是由于它们的量子力学性质。这个项目试图描述这种量子磁相变。它将使用多种实验技术,将中子散射与磁、热、电输运测量相结合。合成这些量子磁体的新家族是这项工作的核心,而高压和高磁场将用于将磁跃迁调整到零温度。该项目广泛使用了国家研究设施,包括国家高磁场实验室和NIST、橡树岭和阿贡国家实验室的中子散射中心。该项目培养的学生和博士后将成为这些设施的未来专家,并熟悉新型体相关电子系统的合成,这是一项罕见但非常有价值的实验技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meigan Aronson其他文献

Magnetic transition and spin fluctuations in the unconventional antiferromagnetic compound Yb3Pt4
非常规反铁磁化合物 Yb3Pt4 的磁转变和自旋涨落
  • DOI:
    10.1088/0953-8984/23/9/094220
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Songrui Zhao;D. MacLaughlin;Oscar Bernal;J. M. Mackie;C. Marques;C. Marques;Y. Janssen;Meigan Aronson;Meigan Aronson
  • 通讯作者:
    Meigan Aronson
Extended versus local fluctuations in quantum critical Ce(Ru1-xFex)2Ge2 (x=xc=0.76).
量子临界 Ce(Ru1-xFex)2Ge2 (x=xc=0.76) 的扩展与局部涨落。
  • DOI:
    10.1103/physrevlett.91.087202
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    W. Montfrooij;Meigan Aronson;B. Rainford;J. Mydosh;A. Murani;P. Haen;T. Fukuhara
  • 通讯作者:
    T. Fukuhara

Meigan Aronson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meigan Aronson', 18)}}的其他基金

Frustration and Order in Heavy Fermions on the Shastry-Sutherland Lattice
沙斯特里-萨瑟兰晶格上重费米子的挫败与有序
  • 批准号:
    1660406
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Frustration and Order in Heavy Fermions on the Shastry-Sutherland Lattice
沙斯特里-萨瑟兰晶格上重费米子的挫败与有序
  • 批准号:
    1310008
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Moment Localization and Delocalization in f-Electron Compounds
f 电子化合物中的矩局域化和离域化
  • 批准号:
    0907457
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Magnetic Correlations and Quantum Critical Points
磁关联和量子临界点
  • 批准号:
    0405961
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Acquisition of a Magnetometer for Materials Research and Student Training at the University of Michigan
密歇根大学购买磁力计用于材料研究和学生培训
  • 批准号:
    0315648
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
2001 International Conference on Strongly Correlated Electron Systems
2001年强相关电子系统国际会议
  • 批准号:
    0109063
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Magnetic Correlations and Quantum Critical Points
磁关联和量子临界点
  • 批准号:
    9977300
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Charge Density Waves in the Rare Earth Polychalcogenides
稀土多硫族化物中的电荷密度波
  • 批准号:
    9319196
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Q-CALC (Quantum Contextual Artificial intelligence for Long-range Correlations)
Q-CALC(用于远程关联的量子上下文人工智能)
  • 批准号:
    10085547
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Small Business Research Initiative
Exploring quantum correlations in superconducting terahertz emitter
探索超导太赫兹发射器中的量子相关性
  • 批准号:
    23K17747
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Emergent spacetime based on quantum correlations and measurements
基于量子相关性和测量的涌现时空
  • 批准号:
    23KJ1154
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
MULTI-TIME CORRELATIONS IN OPEN QUANTUM SYSTEMS
开放量子系统中的多重相关性
  • 批准号:
    EP/X021505/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
RUI: Quantum Correlations and Dynamics of Ring Sensors and Simulators
RUI:环形传感器和模拟器的量子相关性和动力学
  • 批准号:
    2309025
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
  • 批准号:
    RGPIN-2020-04306
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the correlations in space and time of open quantum systems
了解开放量子系统的空间和时间相关性
  • 批准号:
    2745306
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Fundamental analysis of Quantum sensing using non-classical intensity correlations
使用非经典强度相关性对量子传感进行基础分析
  • 批准号:
    580740-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Theory for Quantum Correlations in Extreme Nanoplasmonic Devices
极端纳米等离子体装置中的量子相关理论
  • 批准号:
    2744064
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Study of transient quantum phases of matter via light-control of dynamical charge correlations
通过动态电荷关联的光控制研究物质的瞬态量子相
  • 批准号:
    571425-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了