Frustration and Order in Heavy Fermions on the Shastry-Sutherland Lattice
沙斯特里-萨瑟兰晶格上重费米子的挫败与有序
基本信息
- 批准号:1660406
- 负责人:
- 金额:$ 26.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract****This award aims to explicate the process by which electrons that are initially localized on the f-orbitals of rare earth based heavy fermion compounds can be induced to join the itinerant states comprising the Fermi surface(FS), and the critical fluctuations of the electronic structure that accompany this electronic de-confinement transition. The role of frustration in suppressing magnetic order in heavy fermions that form on the geometrically frustrated Shastry-Sutherland lattice will be investigated. Two distinct ground states are envisaged: a spin liquid where the conduction electrons are decoupled from the fluctuating moments, whose electrons are consequently excluded from the FS, and a Fermi liquid, where a strong Kondo effect delocalizes the f-electrons, which are now incorporated in an expanded FS. These two non-ordered states are separated at T=0 by a purely electronic transition, driven by fluctuations between the large and small FS states. The synthesis of new materials to support both the measurement program of the PI and those of her collaborators is a central theme of this project. Participating undergraduate and graduate students will gain practical and portable experience in a variety of different synthesis and experimental techniques. This research makes extensive use of national research facilities, including neutron scattering centers at NIST and Oak Ridge National Laboratory. ****Non-Technical Abstract****While all materials are disordered at high temperatures, with no discernible patterns or correlations in their configurations, the onset of an ordered phase such as superconductivity or magnetism is overwhelmingly favored as the temperature is reduced. This project seeks to explicate the properties of systems with the most extreme form of order, which occurs exactly at a temperature of absolute zero. The quantum mechanical nature of such a phase transition is paramount, with the result that normal behaviors like the conduction of heat or electricity are drastically modified- even at nonzero temperatures. Here, geometrical constraints associate with a lattice of magnetic moments will be used to realize such T=0 transitions, and their properties will be studied using neutron scattering experiments carried out at NIST and at Oak Ridge National Laboratory. The synthesis of new materials to support both the measurement program of the PI and those of her collaborators is a central theme of this project. Participating undergraduate and graduate students will gain practical and portable experience in a variety of different synthesis and experimental techniques.
* 技术摘要 * 该奖项旨在阐明最初定位在稀土基重费米子化合物的f轨道上的电子可以被诱导加入构成费米表面(FS)的巡回状态的过程,以及伴随这种电子脱限跃迁的电子结构的临界波动。 我们将研究在几何阻挫的Shastry-Sutherland晶格上形成的重费米子中阻挫在抑制磁序中的作用。设想了两种不同的基态:自旋液体,其中传导电子与波动时刻解耦,其电子因此被排除在FS之外,以及费米液体,其中强烈的近藤效应使f-电子离域,其现在被纳入扩展的FS中。这两个无序态在T=0时被一个纯粹的电子跃迁分开,由大FS态和小FS态之间的波动驱动。新材料的合成,以支持PI和她的合作者的测量计划是这个项目的中心主题。参与的本科生和研究生将获得各种不同的合成和实验技术的实践和便携式经验。这项研究广泛利用了国家研究设施,包括NIST和橡树岭国家实验室的中子散射中心。 * 非技术摘要 * 虽然所有材料在高温下都是无序的,在它们的构型中没有可辨别的模式或相关性,但随着温度的降低,有序相(如超导性或磁性)的出现是压倒性的。该项目旨在阐明具有最极端形式的秩序的系统的性质,这些秩序恰好发生在绝对零度的温度下。 这种相变的量子力学性质是至关重要的,其结果是,即使在非零温度下,正常的行为,如热或电的传导也会发生巨大的变化。 在这里,几何约束与晶格的磁矩将被用来实现这样的T=0的转变,其性质将使用在NIST和橡树岭国家实验室进行的中子散射实验进行研究。新材料的合成,以支持PI和她的合作者的测量计划是这个项目的中心主题。参与的本科生和研究生将获得各种不同的合成和实验技术的实践和便携式经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meigan Aronson其他文献
Magnetic transition and spin fluctuations in the unconventional antiferromagnetic compound Yb3Pt4
非常规反铁磁化合物 Yb3Pt4 的磁转变和自旋涨落
- DOI:
10.1088/0953-8984/23/9/094220 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Songrui Zhao;D. MacLaughlin;Oscar Bernal;J. M. Mackie;C. Marques;C. Marques;Y. Janssen;Meigan Aronson;Meigan Aronson - 通讯作者:
Meigan Aronson
Extended versus local fluctuations in quantum critical Ce(Ru1-xFex)2Ge2 (x=xc=0.76).
量子临界 Ce(Ru1-xFex)2Ge2 (x=xc=0.76) 的扩展与局部涨落。
- DOI:
10.1103/physrevlett.91.087202 - 发表时间:
2003 - 期刊:
- 影响因子:8.6
- 作者:
W. Montfrooij;Meigan Aronson;B. Rainford;J. Mydosh;A. Murani;P. Haen;T. Fukuhara - 通讯作者:
T. Fukuhara
Meigan Aronson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meigan Aronson', 18)}}的其他基金
Frustration and Order in Heavy Fermions on the Shastry-Sutherland Lattice
沙斯特里-萨瑟兰晶格上重费米子的挫败与有序
- 批准号:
1310008 - 财政年份:2013
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant
Moment Localization and Delocalization in f-Electron Compounds
f 电子化合物中的矩局域化和离域化
- 批准号:
0907457 - 财政年份:2009
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant
Magnetic Correlations and Quantum Critical Points
磁关联和量子临界点
- 批准号:
0732294 - 财政年份:2007
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant
Magnetic Correlations and Quantum Critical Points
磁关联和量子临界点
- 批准号:
0405961 - 财政年份:2004
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant
Acquisition of a Magnetometer for Materials Research and Student Training at the University of Michigan
密歇根大学购买磁力计用于材料研究和学生培训
- 批准号:
0315648 - 财政年份:2003
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
2001 International Conference on Strongly Correlated Electron Systems
2001年强相关电子系统国际会议
- 批准号:
0109063 - 财政年份:2001
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Magnetic Correlations and Quantum Critical Points
磁关联和量子临界点
- 批准号:
9977300 - 财政年份:1999
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Charge Density Waves in the Rare Earth Polychalcogenides
稀土多硫族化物中的电荷密度波
- 批准号:
9319196 - 财政年份:1994
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Research Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Congestion control in complex networks with higher-order interactions
具有高阶交互的复杂网络中的拥塞控制
- 批准号:
DP240100963 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Discovery Projects
RII Track-4:NSF: Continental-scale, high-order, high-spatial-resolution, ice flow modeling based on graphics processing units (GPUs)
RII Track-4:NSF:基于图形处理单元 (GPU) 的大陆尺度、高阶、高空间分辨率冰流建模
- 批准号:
2327095 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348955 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
MCA: Problem-Based Learning for Warehousing and Order Fulfillment
MCA:基于问题的仓储和订单履行学习
- 批准号:
2322250 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant














{{item.name}}会员




