New Photonic Materials from Comb Block Copolymers assembled in the Solid State

由固态组装的梳状嵌段共聚物制成的新型光子材料

基本信息

  • 批准号:
    0734158
  • 负责人:
  • 金额:
    $ 17.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: This proposal describes research on the assembly of comb block copolymers into ordered arrays in the solid state to form new photonic materials. Comb block copolymers have a polymeric backbone and regularly and densely spaced polymeric arms and, because of this geometry, these polymers have ultrahigh molecular weights that are typically above one million grams per mole and may exceed fifty million grams per mole. Despite their sizes, these polymers assemble into ordered morphologies in the solid state with domain sizes (the size of the repeat unit) in excess of one hundred nanometers and, for some comb block copolymers, up to 250 nm. This work is highly original for several reasons. First, these polymers are a relatively new polymeric architecture that have molecular weights and geometries that are challenging to impossible to synthesize for linear block copolymers. Second, these polymers assemble in the solid state into ordered morphologies despite predictions based on their ultrahigh molecular weights. The common belief in this field is that polymers with ultrahigh molecular weights will not assemble, but this belief is based on assumptions for linear block copolymers. These assumptions do not hold for comb block copolymers due to their unique geometries, so they change the limits of what polymers can be assembled and, importantly, open new opportunities to assemble ultrahigh molecular weight copolymers. Third, these polymers form new photonic materials after their assembly in the solid state. This result is critically important because of the potential importance of polymers in high-end optical applications. Comb block copolymers are assembled without additives, their assembly may be more ordered than typical linear block copolymers assembled with additives that often phase segregate and form defects. In this proposal, the assembly of comb block copolymers into ordered arrays and their optical properties will be investigated. This work has both fundamental applications the assembly of a new architecture of block polymer and practical applications access to new photonic materials. NON-TECHNICAL SUMMARY: This proposal describes new polymers that spontaneously assemble into new, potentially very important, optical materials. The combination of polymers and optics is an exciting frontier with many potential high-end applications in the next generation of computers that use light rather than electrons, current and future sensors that are easily integrated into portable units, materials to speed the transfer of information using light, and many more areas of science and technology. This work describes the use of a powerful concept (self-assembly) to create ordered arrays of polymers that interact with light in predictable and, occasionally, new ways. In immediate applications, these polymers will allow precise atomic tuning to sense the presence of metals and, possibly, toxins in real time. This work is possible because these polymers can be controlled on a molecular level to integrate molecules that will change the optical properties of the polymers in response to a stress or stimuli. In addition, this proposal will make an immediate impact in the education of undergraduates including many women and minorities. A new class will be started at the University of Iowa that will encourage freshman and sophomores to become involved in research that will broaden their horizons and further their education.
技术概述:本提案描述了梳状嵌段共聚物在固态中组装成有序阵列以形成新的光子材料的研究。梳状嵌段共聚物具有聚合主链和规则且密集分布的聚合臂,由于这种几何结构,这些聚合物具有超高分子量,通常在每摩尔100万克以上,甚至可能超过每摩尔5000万克。尽管它们的尺寸很大,但这些聚合物在固体状态下组装成有序的形态,其结构域尺寸(重复单元的大小)超过100纳米,有些梳状嵌段共聚物的尺寸可达250纳米。由于几个原因,这项工作是高度原创的。首先,这些聚合物是一种相对较新的聚合物结构,其分子量和几何形状是线性嵌段共聚物难以合成的。其次,这些聚合物在固体状态下组装成有序的形态,尽管预测是基于它们的超高分子量。该领域的普遍观点是,超高分子量的聚合物不会聚集,但这种观点是基于线性嵌段共聚物的假设。由于梳子嵌段共聚物具有独特的几何形状,因此这些假设并不适用于梳子嵌段共聚物,因此它们改变了聚合物可组装的限制,重要的是,为组装超高分子量共聚物开辟了新的机会。第三,这些聚合物在固态下组装后形成新的光子材料。由于聚合物在高端光学应用中的潜在重要性,这一结果至关重要。梳状嵌段共聚物是在没有添加添加剂的情况下组装的,它们的组装可能比典型的线性嵌段共聚物更有序,而添加了添加剂的线状嵌段共聚物通常会相分离并形成缺陷。本文将研究梳状嵌段共聚物的有序排列及其光学性质。这项工作具有组装一种新的嵌段聚合物结构的基础应用和获得新的光子材料的实际应用。非技术概述:本提案描述了可以自发组装成新的、潜在的非常重要的光学材料的新聚合物。聚合物和光学的结合是一个令人兴奋的前沿领域,在下一代使用光而不是电子的计算机、易于集成到便携式设备中的当前和未来传感器、利用光加速信息传输的材料以及许多其他科学技术领域都有许多潜在的高端应用。这项工作描述了使用一个强大的概念(自组装)来创建有序的聚合物阵列,这些聚合物以可预测的,偶尔的新方式与光相互作用。在即时应用中,这些聚合物将允许精确的原子调谐来实时感知金属的存在,甚至可能是毒素。这项工作是可能的,因为这些聚合物可以在分子水平上进行控制,以整合分子,从而改变聚合物的光学特性,以响应应力或刺激。此外,该提案将对包括许多妇女和少数民族在内的本科生的教育产生直接影响。爱荷华大学(University of Iowa)将开设一门新课程,鼓励大一和大二的学生参与研究,以开阔他们的视野,促进他们的教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ned Bowden其他文献

Ned Bowden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ned Bowden', 18)}}的其他基金

Separation and Purification of Fatty Acid Esters Derived from Vegetable Oil
植物油脂肪酸酯的分离纯化
  • 批准号:
    2241746
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
PFI-RP: Development of a new fertilizer to improve the harvest yields of corn and soybeans
PFI-RP:开发新型肥料以提高玉米和大豆的收成
  • 批准号:
    1827336
  • 财政年份:
    2018
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Integration of unexplored functional groups into polymer science
将未探索的官能团整合到聚合物科学中
  • 批准号:
    1213325
  • 财政年份:
    2012
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Site-isolation of catalysts within "smart" thimbles for cascade reactions and recycling
“智能”套管内催化剂的位点隔离,用于级联反应和回收
  • 批准号:
    0848162
  • 财政年份:
    2009
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Melting-free Photonic Memory with Layered Chalcogenide Materials
职业:采用层状硫族化物材料的免熔化光子存储器
  • 批准号:
    2338546
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SiGeSn-based heterostructures for intersubband photonic materials
合作研究:基于SiGeSn的子带间光子材料异质结构
  • 批准号:
    2320178
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Synthetic optical materials for photonic metasurfaces applications
用于光子超表面应用的合成光学材料
  • 批准号:
    2898400
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Studentship
Excellence in Research: Tunable hybrid photonic materials at strong coherent coupling
卓越的研究:强相干耦合的可调谐混合光子材料
  • 批准号:
    2301350
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SiGeSn-based heterostructures for intersubband photonic materials
合作研究:基于SiGeSn的子带间光子材料异质结构
  • 批准号:
    2320179
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Novel Polymers of Intrinsic Microporosity for use as photonic materials
用作光子材料的新型固有微孔聚合物
  • 批准号:
    EP/V027840/1
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Harnessing Structural Colour in Cellulose Nanocrystals for Biodegradable Photonic Elastomer Materials
利用纤维素纳米晶体中的结构颜色制备可生物降解的光子弹性体材料
  • 批准号:
    569601-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Study of innovative materials, structures engineering and packaging process for enhanced-sensitive and reliable label-free photonic sensors
研究增强灵敏且可靠的无标签光子传感器的创新材料、结构工程和封装工艺
  • 批准号:
    RGPIN-2018-05373
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Discovery Grants Program - Individual
Photonic Processing in High-Speed Manufacturing of Eco-Friendly Printable Materials & Sensors
环保可印刷材料高速制造中的光子处理
  • 批准号:
    DGECR-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Discovery Launch Supplement
Novel Polymers of Intrinsic Microporosity for use as photonic materials
用作光子材料的新型固有微孔聚合物
  • 批准号:
    EP/V027735/1
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了