NSF-CBMS Regional Conference on Water Waves-Theory and Experiment
NSF-CBMS 水波理论与实验区域会议
基本信息
- 批准号:0735260
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-15 至 2009-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of water waves has a long and distinguished history, with important contributions from Euler, Stokes, Kelvin, Zakharov and others. The subject has had practical application throughout history; its recent significance was demonstrated dramatically by the tsunami of 2004, the storm surge that battered New Orleans in 2005, and "rogue waves" that seem to appear and disappear mysteriously. In each of these cases, the large amplitudes of these waves were predicted poorly or not at all and caused enormous damage. For these reasons and others, much of the emphasis in current research on water waves is on the dynamics of nonlinear waves, with finite amplitude.More abstractly, this subject is a prototype of a dynamical system that exhibits interesting nonlinear phenomena: resonant interactions, solitons, wave breaking and more.In a series of ten lectures, Professor Harvey Segur (University of Colorado at Boulder) will develop the mathematical theory of water waves, starting from basic principles and ending at forefronts of research in several directions. The lectures are intended to be accessible to someone with a basic knowledge of partial differential equations and of classical physics. The lecture series has two objectives: (i) to identify mathematical methods that have proven useful in solving important problems in this subject; and (ii) to identify important open problems. Some of the topics to be discussed are:-What are the governing equations of water waves? Stokes' formulation (from 1847) is the most commonly accepted statement of the problem, and it describes very many (but not all) of the phenomena observed. -Which physical phenomena can be predicted easily from these equations? Some examples are phase velocity, group velocity, dispersive waves, wave focusing, deep water vs. shallow water, and more. -How can participants at the conference observe these physical phenomena?This lecture series will differ from others in the CBMS series in that a laboratory will be set up, where Professor Diane Henderson (Penn State University) will create a series of physical experiments on water waves. Participants at the conference will be encouraged to 'play' in the laboratory, and to see how mathematical concepts from the lectures appear naturally in physical experiments. -Both deterministic and statistical models are used to predict oceanic events like storms, dangerously high seas and tsunamis. What are the advantages and disadvantages of each kind of model?-Careful analysis, applied to Stokes' formulation, has led to impressive new results, both in terms of well-posedness and in terms of existence of wave patterns of permanent form. What are these results? -What have we learned from approximate theories of water waves? Is there more to learn from them? For example, the interlocking miracles of soliton theory were first discovered in the KdV equation, which was derived by Korteweg and de Vries as an approximate model of wave propagation in shallow water. -What important physical phenomena are not described by Stokes' formulation? -What are some of the open problems in this subject?
水波理论有着悠久而杰出的历史,欧拉、斯托克斯、开尔文、扎哈罗夫和其他人都做出了重要贡献。 这一主题在历史上有过实际应用;它最近的重要性在2004年的海啸、2005年袭击新奥尔良的风暴潮以及似乎神秘地出现和消失的“流氓波”中得到了戏剧性的证明。 在每一种情况下,这些波的大振幅都被预测得很差或根本没有,并造成了巨大的破坏。 由于这些原因和其他原因,目前对水波的研究重点是有限振幅的非线性波的动力学。更抽象地说,这个主题是一个动力系统的原型,展示了有趣的非线性现象:共振相互作用,孤立子,波的破碎和更多。在一系列的十个讲座,Harvey Segur教授(位于博尔德的科罗拉多大学)将开发水波的数学理论,从基本原理开始,在几个方向的研究前沿结束。 讲座的目的是要访问的人与偏微分方程和经典物理的基本知识。 该系列讲座有两个目标:(一)确定数学方法,已被证明是有用的,在解决这个问题的重要问题;(二)确定重要的开放问题。 要讨论的一些主题是:-什么是水波的控制方程? 斯托克斯的公式(从1847年开始)是最普遍接受的问题陈述,它描述了很多(但不是全部)观察到的现象。- 哪些物理现象可以很容易地从这些方程预测? 例如相速度、群速度、色散波、波聚焦、深水与浅水等。 - 与会者如何观察这些物理现象?本系列讲座与CBMS系列的其他讲座不同之处在于,将建立一个实验室,Diane亨德森教授(宾夕法尼亚州立大学)将在那里创建一系列关于水波的物理实验。 与会者将被鼓励在实验室里“玩”,看看讲座中的数学概念如何自然地出现在物理实验中。 - 确定性和统计模型都用于预测海洋事件,如风暴、危险的公海和海啸。 每种模式的优缺点是什么?仔细分析,适用于斯托克斯的提法,导致了令人印象深刻的新结果,无论是在适定性和永久形式的波模式的存在。 这些结果是什么? - 我们从水波的近似理论中学到了什么? 还有什么可以向他们学习的吗? 例如,孤立子理论的连锁奇迹首先在KdV方程中被发现,KdV方程是由Korteweg和de弗里斯作为浅水中波传播的近似模型导出的。 - 哪些重要的物理现象没有被斯托克斯公式描述?- 在这个问题上有哪些悬而未决的问题?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Mahmood其他文献
Case 6-2002
案例6-2002年
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Robert S. Weinstein;Mohammad Mahmood - 通讯作者:
Mohammad Mahmood
Mohammad Mahmood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Mahmood', 18)}}的其他基金
HBCU Excellence in Research: Research and Education Center for Investigation of Chemical Transformations in Host-Guest Systems at Extreme Conditions
HBCU 卓越研究:极端条件下主客体系统化学转化研究和教育中心
- 批准号:
2302437 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Excellence in Research - Exploring Frontiers in Novel Material Synthesis at High Pressures: Synthesis and Recovery of Superhard and High Energy-Density Polynitrides
卓越研究 - 探索高压新型材料合成前沿:超硬和高能量密度聚氮化物的合成和回收
- 批准号:
2200670 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
CBMS Conference: Mathematical Foundations of Transformation Optics
CBMS 会议:变换光学的数学基础
- 批准号:
1346808 - 财政年份:2014
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
相似国自然基金
预冲击降低SWL导致的肾小管上皮细胞膜PS残基外翻及CBMs表达上调
- 批准号:81000293
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
- 批准号:
1933548 - 财政年份:2020
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Applications of Polynomial Systems - June 4-8, 2018
NSF/CBMS 数学科学区域会议 - 多项式系统的应用 - 2018 年 6 月 4-8 日
- 批准号:
1741730 - 财政年份:2018
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
NSF/CBMS Regional Research Conferences in Mathematics
NSF/CBMS 数学区域研究会议
- 批准号:
1804259 - 财政年份:2018
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
- 批准号:
1642636 - 财政年份:2016
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference on Higher Representation Theory-June 19-23, 2014
NSF/CBMS 更高表征理论区域会议 - 2014 年 6 月 19-23 日
- 批准号:
1347289 - 财政年份:2014
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Combinatorial Zeta and L-functions
NSF/CBMS 数学科学区域会议:组合 Zeta 和 L 函数
- 批准号:
1341413 - 财政年份:2014
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -- Inverse Scattering Theory for Transmission Eigenvalues -- May 27-May 31, 2014
NSF/CBMS 数学科学区域会议 -- 传输特征值的逆散射理论 -- 2014 年 5 月 27 日至 5 月 31 日
- 批准号:
1347475 - 财政年份:2014
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Supporting the Conference Series: NSF/CBMS Regional Research Conferences in the Mathematical Sciences
支持会议系列:NSF/CBMS 数学科学区域研究会议
- 批准号:
1338632 - 财政年份:2013
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - The Mathematics of the Social and Behavioral Sciences
NSF/CBMS 数学科学区域会议 - 社会和行为科学的数学
- 批准号:
1137949 - 财政年份:2012
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
- 批准号:
1137952 - 财政年份:2012
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant