CAREER: A Scalable Hierarchical Framework for High-Performance Data Storage
职业:高性能数据存储的可扩展分层框架
基本信息
- 批准号:0746832
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern scientific applications, such as analyzing information from large-scale distributed sensors, climate monitoring, and forecasting environmental impacts, require powerful computing resources and entail managing an ever-growing amount of data. While high-end computer architectures comprising of tens-of-thousands or more processors are becoming a norm in modern High Performance Computing (HPC) systems supporting such applications, this growth in computational power has not been matched by a corresponding improvement in storage and I/O systems. Consequently, there is an increasing gap between storage system performance and computational power of clusters, which poses critical challenges, especially in supporting emerging petascale scientific applications. This research develops a framework for bridging the said performance gap and supporting efficient and reliable data management for HPC. Through innovation, design, development, and deployment of the framework, the investigators improve the I/O performance of modern HPC setups.The target HPC environments present unique research challenges, namely, maintaining I/O performance with increasing storage capacity, low-cost administration of a large number of resources, high-volume long-distance data transfers, and adapting to the varying I/O demands of applications. This research addresses these challenges in storage management by employing a Scalable Hierarchical Framework for HPC data storage. The framework provides high-performance reliable storage within HPC cluster sites via hierarchical organization of storage resources, decentralized interactions between sites to support high-speed, high-volume data exchange and strategic data placement, and system-wide I/O optimizations. The overall goal is a data storage framework attuned to the needs of modern HPC applications, which mitigates the underlying performance gap between compute resources and the I/O system. This research adopts a holistic approach where all system components interact to yield an efficient data management system for HPC.
现代科学应用,如分析来自大规模分布式传感器的信息、气候监测和预测环境影响,需要强大的计算资源,并需要管理不断增长的数据量。虽然包括数万个或更多处理器的高端计算机架构正在成为支持这种应用的现代高性能计算(HPC)系统中的标准,但是计算能力的这种增长还没有与存储和I/O系统的相应改进相匹配。因此,存储系统性能和集群计算能力之间的差距越来越大,这带来了严峻的挑战,特别是在支持新兴的千万亿次科学应用方面。这项研究开发了一个框架,以弥合上述性能差距,并支持高效和可靠的数据管理HPC。通过框架的创新、设计、开发和部署,研究人员提高了现代HPC设置的I/O性能。目标HPC环境提出了独特的研究挑战,即在增加存储容量的情况下保持I/O性能、大量资源的低成本管理、大容量长距离数据传输以及适应应用程序的不同I/O需求。本研究通过采用HPC数据存储的可扩展分层框架来解决存储管理中的这些挑战。该框架通过存储资源的分层组织、站点之间的分散式交互以支持高速、大容量数据交换和战略数据放置以及系统范围的I/O优化,在HPC群集站点内提供高性能可靠的存储。总体目标是一个适应现代HPC应用需求的数据存储框架,它可以缓解计算资源和I/O系统之间的潜在性能差距。本研究采用了一种整体的方法,所有系统组件相互作用,产生一个高效的数据管理系统的HPC。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Butt其他文献
Ali Butt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Butt', 18)}}的其他基金
Collaborative Research: CNS Core: Medium:HardLambda: A new FaaS Abstraction for Cross-Stack Resource Management in Disaggregated Datacenters
协作研究:CNS 核心:Medium:HardLambda:分解数据中心跨堆栈资源管理的新 FaaS 抽象
- 批准号:
2106634 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
1919113 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Workshop on Data Storage Research Vision
数据存储研究愿景研讨会
- 批准号:
1829096 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Scalable Fine-Grained Cloud Monitoring for Empowering IoT
CSR:小型:协作研究:支持物联网的可扩展细粒度云监控
- 批准号:
1615411 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Student Travel Support for IEEE 23rd International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2015)
IEEE 第 23 届计算机和电信系统建模、分析和仿真国际研讨会 (MASCOTS 2015) 学生旅行支持
- 批准号:
1541504 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSR: Medium: Pythia: An Application Analysis and Online Modeling Based Prediction Framework for Scalable Resource Management
CSR:中:Pythia:基于应用分析和在线建模的可扩展资源管理预测框架
- 批准号:
1405697 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
DC: Small: Collaborative Research: Exploring Energy-Reliability Trade-offs in Data Storage Systems
DC:小型:协作研究:探索数据存储系统中的能源可靠性权衡
- 批准号:
1016408 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Increasing Student Participation in Cluster Computing through IEEE Cluster 2010 Attendance
通过出席 IEEE Cluster 2010 提高学生对集群计算的参与
- 批准号:
1049858 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSR: Small: Towards Realizing Cloud HPC: An Adaptive Programming Model for Accelerator-based Clusters
CSR:小:迈向实现云 HPC:基于加速器的集群的自适应编程模型
- 批准号:
1016793 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
U.S. - Pakistan International Planning Visit: Economical Computing Substrate for Developing Regions
美国-巴基斯坦国际规划访问:发展中地区的经济计算基板
- 批准号:
0940048 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable Nanomanufacturing of Hierarchical Nanometer-Scale Colloidal Assemblies Using Integrated Electrospray and Microfluidics
使用集成电喷雾和微流体技术进行分层纳米级胶体组件的可扩展纳米制造
- 批准号:
1914436 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Scalable Nanomanufacturing of Optical Metasurfaces by Hierarchical Printing and Predictive Modeling
通过分层打印和预测建模进行光学超表面的可扩展纳米制造
- 批准号:
1825308 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Scalable Manufacturing of Hierarchical Nanostructures by Acoustically Modulated Emulsion Technique for Next Generation Renewable Energy Applications
职业:通过声学调制乳液技术大规模制造分层纳米结构,用于下一代可再生能源应用
- 批准号:
1752378 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
A Scalable Model for Hierarchical Community Discovery in Graph Streams
图流中分层社区发现的可扩展模型
- 批准号:
489574-2016 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Scalable Manufacturing of Hierarchical Silicon/Carbon Nanocomposite Anodes for Next Generation Batteries
用于下一代电池的分层硅/碳纳米复合阳极的可扩展制造
- 批准号:
1660572 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
A Scalable Model for Hierarchical Community Discovery in Graph Streams
图流中分层社区发现的可扩展模型
- 批准号:
489574-2016 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CRII: CHS: Scalable Interactive Image Segmentation through Hierarchical, Query-Driven Processing
CRII:CHS:通过分层、查询驱动的处理进行可扩展的交互式图像分割
- 批准号:
1657020 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Generating Hierarchical Vector-Valued Data Summaries for Scalable Flow Data Processing, Analysis and Visualization
职业:为可扩展流数据处理、分析和可视化生成分层向量值数据摘要
- 批准号:
1553329 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
A Scalable Model for Hierarchical Community Discovery in Graph Streams
图流中分层社区发现的可扩展模型
- 批准号:
489574-2016 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral
Scalable Nanomanufacturing of Hierarchical Inorganic-Polymer Hybrid Electrodes for Next Generation High-Energy Lithium-Ion Batteries
用于下一代高能锂离子电池的分层无机聚合物混合电极的可扩展纳米制造
- 批准号:
1537894 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant