CAREER:Stochastic Modeling, Analysis and Simulation of Gene Networks
职业:基因网络的随机建模、分析和模拟
基本信息
- 批准号:0746882
- 负责人:
- 金额:$ 23.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A central theme in post-genomic research is the dissection and understanding of the complex dynamical interaction involved in gene regulation. Recent advances in technology have enabled biologists to investigate gene expression and regulation in single cells on a whole-genome scale, which reveals that the amount of mRNA and protein expressed from a gene is a stochastic process. While such experimental studies have provided valuable insights on gene regulation, a computational approach based on stochastic methods is essential to understanding dynamic gene interaction, since intuitive interpretations from experimental results cannot fully expose the dynamics of a gene network. However, the current stochastic approach does not provide sophisticated modeling techniques, analytical methods and efficient simulation algorithms. This research employs a module-based approach to modeling large gene networks, similar to that used in analyzing electronic circuits, and aims to develop computational tools for analyzing and simulating gene networks. The investigator pursues the following three research thrusts: 1) derive a general stochastic model for gene expression and statistical methods for estimating model parameters based on experimental results, 2) characterize some common modules in gene networks and develop a module-based approach to analyzing gene networks, and 3) devise efficient stochastic simulation methods for large gene networks. The computational approach employed in this project will potentially have major impact on biological research, since it will shed light on many unanswered questions related to the stochasticity in gene regulation. The computational tools developed in this project will find numerous applications in biological research related to the design of drugs and synthetic gene circuits, as well as the investigation of diseases, such as cancer. The methods devised in this research can also be employed to simulate communication networks and design or optimize network protocols.
后基因组研究的一个中心主题是对基因调控中复杂的动态相互作用的剖析和理解。最近的技术进步使生物学家能够在全基因组尺度上研究单个细胞中的基因表达和调控,这揭示了基因表达的信使核糖核酸和蛋白质的数量是一个随机过程。虽然这些实验研究为基因调控提供了有价值的见解,但基于随机方法的计算方法对于理解动态的基因相互作用是必不可少的,因为从实验结果的直观解释不能完全揭示基因网络的动态。然而,目前的随机方法没有提供完善的建模技术、分析方法和高效的仿真算法。这项研究采用了一种基于模块的方法来建模大型基因网络,类似于分析电子电路所使用的方法,旨在开发用于分析和模拟基因网络的计算工具。研究人员开展了以下三个方面的研究工作:1)根据实验结果推导出基因表达的一般随机模型和估计模型参数的统计方法;2)刻画基因网络中的一些常见模块,并提出一种基于模块的基因网络分析方法;3)设计高效的大型基因网络的随机模拟方法。这个项目中采用的计算方法可能会对生物学研究产生重大影响,因为它将阐明与基因调控中的随机性有关的许多悬而未决的问题。在这个项目中开发的计算工具将在与药物和合成基因电路设计相关的生物学研究以及癌症等疾病的调查中得到大量应用。本研究提出的方法也可用于模拟通信网络,设计或优化网络协议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Cai其他文献
Formation Mechanisms and Characteristics of Transition Patterns in Oblique Detonaitons
斜向爆轰过渡模式的形成机制及特征
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.5
- 作者:
Shikun Miao;Jin Zhou;Shijie Liu;Xiaodong Cai - 通讯作者:
Xiaodong Cai
Design, Synthesis, and Anticancer Activities of Novel 2-Amino-4-phenylthiazole Scaffold Containing Amide Moieties
含酰胺部分的新型2-氨基-4-苯基噻唑支架的设计、合成和抗癌活性
- DOI:
10.1155/2018/4301910 - 发表时间:
2018 - 期刊:
- 影响因子:3
- 作者:
Zhi;Hong;Sai;Xiaodong Cai;Yuchao Yao;Muriira Cyrus Mwenda;Jin;D. Cai;Yu Chen - 通讯作者:
Yu Chen
Detonation Stabilization in Supersonic Flow: Effects of Suction Boundaries
超音速流中的爆炸稳定性:吸力边界的影响
- DOI:
10.2514/1.j058625 - 发表时间:
2020-03 - 期刊:
- 影响因子:2.5
- 作者:
Xiaodong Cai;Ralf Deiterding;Jianhan Liang;Mingbo Sun;Dezun Dong - 通讯作者:
Dezun Dong
Electrode Reconstruction Assists Postoperative Contact Selection in Deep Brain Stimulation.
电极重建有助于深部脑刺激的术后接触选择。
- DOI:
10.1016/j.wneu.2019.01.101 - 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
Doudou Zhang;Hai Lin;Jiali Liu;Zesi Liu;Jie Yan;Xiaodong Cai - 通讯作者:
Xiaodong Cai
Neurophysiological Evaluation of the Optimum Target in Gamma Thalamotomy: Indirect Evidence
伽马丘脑切除术最佳目标的神经生理学评估:间接证据
- DOI:
10.1159/000087307 - 发表时间:
2005 - 期刊:
- 影响因子:1.7
- 作者:
Sumito Sato;C. Ohye;T. Shibazaki;A. Zama;Xiaodong Cai - 通讯作者:
Xiaodong Cai
Xiaodong Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Cai', 18)}}的其他基金
CIF: Small: Sparse Signal Processing Methods for Inference of Differential Gene Regulatory Networks
CIF:小:用于推断差异基因调控网络的稀疏信号处理方法
- 批准号:
1319981 - 财政年份:2013
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
NeTS-NBD: Cooperative Multi-Hop Wireless Communications and Networking: Joint Design of Error Control Coding, Medium Access, and Routing
NeTS-NBD:协作多跳无线通信和网络:差错控制编码、媒体访问和路由的联合设计
- 批准号:
0626695 - 财政年份:2006
- 资助金额:
$ 23.89万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
- 批准号:
2412025 - 财政年份:2024
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
DMS/NIGMS 1: Multi-timescale stochastic modeling to investigate epigenetic memory in bacteria
DMS/NIGMS 1:用于研究细菌表观遗传记忆的多时间尺度随机模型
- 批准号:
2245816 - 财政年份:2023
- 资助金额:
$ 23.89万 - 项目类别:
Continuing Grant
Automated particle tracking and stochastic modeling of molecular motion in submicron living systems
亚微米生命系统中分子运动的自动粒子跟踪和随机建模
- 批准号:
RGPIN-2019-06435 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Mortality Modeling and Longevity Risk Management in Multiple-population Context
多人群背景下的随机死亡率建模和长寿风险管理
- 批准号:
RGPIN-2020-05387 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
- 批准号:
2204240 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Continuing Grant
Stochastic Dependence Modeling
随机依赖模型
- 批准号:
CRC-2017-00051 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Canada Research Chairs
CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems
职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式
- 批准号:
2234289 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
Advancing stochastic modeling and diagnostics of change for hydroclimatic processes and extremes
推进水文气候过程和极端变化的随机建模和诊断
- 批准号:
RGPIN-2019-06894 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Discovery Grants Program - Individual
Solvable and Other Stochastic Models for Risk Modeling and Asset Pricing in Quantitative Finance
定量金融中风险建模和资产定价的可解模型和其他随机模型
- 批准号:
RGPIN-2018-06176 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Discovery Grants Program - Individual
Objective Stochastic Modeling of Quasibrittle Damage and Failure Through Mechanistic Mapping of Random Fields
通过随机场的机械映射对准脆性损伤和失效进行客观随机建模
- 批准号:
2151209 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant














{{item.name}}会员




