CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems

职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式

基本信息

  • 批准号:
    2234289
  • 负责人:
  • 金额:
    $ 54.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will support fundamental research in modeling stochastic traffic flows for smart mobility systems, based on the fusion of classical transportation models and learning techniques. With the goals of mitigating traffic congestions, improving transportation safety, and reducing vehicle emissions, many smart mobility applications require accurate, reliable, and timely traffic information as input. To meet such needs, this project will lay the foundation of machine learning and traffic flow theory to yield better estimations and predictions of mobility patterns. The method uses transportation domain knowledge to regularize the training process of machine learning. The results will significantly enhance the effectiveness and robustness of those smart mobility applications at both small and large scales. The research activities can be closely integrated with a set of education and outreach activities that include (i) developing a virtual computing lab to facilitate student educations, researcher engagement, government employee training, and industry collaboration, (ii) modernizing the transportation curriculum with research outcomes, (iii) broadening the participation of k-12 students in the annual summer “Transportation Camps” and underrepresented students in the Artificial Intelligence club of a minority-serving institution. Those activities will help transportation students better recognize the importance of engineering knowledge in the era of smart mobility system.The goal of this project is to contribute fundamental theories and a set of markedly improved algorithms to traffic flow modeling. Leveraging the concept of physics regularized machine learning, the research could encode both continuous and discretized traffic flow models into Gaussian process for training regularization. This new model can efficiently resolve the common data sparsity and noise issues and facilitate various smart mobility applications. To accommodate streaming data, this project will also develop a novel physics regularized streaming learning framework that can efficiently improve the model performances in real-time. When dealing with big data, this project can further synergize data of different resolutions, fidelities, and sources to enable sparse Gaussian process and Bayesian committee machine for fast learning. This foundational research can enormously promote machine learning applications in smart mobility systems and contribute to formulating sustainable, scalable, and robust traffic flow models. This project will bridge the gap between classical transportation methods and data-driven approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期的职业发展(职业)赠款将根据经典运输模型和学习技术的融合,为智能移动系统的随机交通流量进行建模,以支持基础研究。有了减轻交通拥堵,提高运输安全和减少车辆排放的目标,许多智能移动性应用需要准确,可靠且及时的交通信息作为输入。为了满足这种需求,该项目将奠定机器学习和交通流量理论的基础,以获得更好的估计和对流动性模式的预测。该方法使用运输领域知识来规范机器学习的训练过程。结果将显着提高小规模和大型智能移动性应用的有效性和鲁棒性。研究活动可以与一系列教育和外展活动进行紧密整合,包括(i)开发虚拟计算实验室,以支持学生教育,研究人员参与,政府员工培训和行业合作,(ii)通过研究成果进行运输货币,(iii)将K-12学生的参与范围扩大,使K-12学生在年度夏季“交通营业营”中宽广的学生和人工学会宣布一家人的精神,并在人工学会上,一家人的宣传。这些活动将帮助学生更好地意识到在智能移动系统时代工程知识的重要性。该项目的目的是为基本理论和一系列明显改进的算法贡献到交通流建模。为了利用物理正规化机器学习的概念,该研究可以将连续和离散的交通流模型编码为高斯的训练过程。这个新模型可以有效地解决常见的数据稀疏性和噪声问题,并促进各种智能移动性应用程序。为了适应流数据,该项目还将开发出一种新型的物理正规流学习框架,该框架可以有效地实时改善模型性能。在处理大数据时,该项目可以进一步综合不同的分辨率,保真度和来源的数据,以实现稀疏的高斯流程和贝叶斯委员会机器进行快速学习。这项基础研究可以增强智能移动性系统中的机器学习应用,并有助于制定可持续,可扩展和强大的交通流模型。该项目将弥合经典运输方法与数据驱动方法之间的差距。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准来诚实地通过评估来诚实地支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrete macroscopic traffic flow model considering lane-changing behaviors in the mixed traffic environment
混合交通环境下考虑换道行为的离散宏观交通流模型
Modeling the impact of COVID-19 on transportation at later stage of the pandemic: A case study of Utah
Traffic Flow Modeling With Gradual Physics Regularized Learning
An equitable signalized arterial origin-destination flow estimation by a fairness-aware artificial intelligence
通过具有公平意识的人工智能进行公平的信号化动脉起点-目的地流量估计
A Transfer Learning–Based LSTM for Traffic Flow Prediction with Missing Data
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xianfeng Yang其他文献

Surface characterization of silicon nitride powder and electrokinetic behavior of its aqueous suspension
氮化硅粉末的表面表征及其水悬浮液的动电行为
  • DOI:
    10.1016/j.ceramint.2019.12.215
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhentao Ni;Jie Jiang;Xianfeng Yang;Xiaole Yang;Zhe Zhou;Qinglong He
  • 通讯作者:
    Qinglong He
Crushing behavior and energy absorption of a bio-inspired bi-directional corrugated lattice under quasi-static compression load
仿生双向波纹网格在准静态压缩载荷下的破碎行为和能量吸收
  • DOI:
    10.1016/j.compstruct.2022.115315
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Bo Li;Hua Liu;Qiao Zhang;Xianfeng Yang;Jialing Yang
  • 通讯作者:
    Jialing Yang
Efficient genome editing of rubber tree (Hevea brasiliensis) using CRISPR/Cas9 ribonucleoproteins
使用 CRISPR/Cas9 核糖核蛋白对橡胶树(Hevea brasiliensis)进行高效基因组编辑
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Yueting Fan;Shichao Xin;Xuemei Dai;Xianfeng Yang;Huasun Huang;Yuwei Hua
  • 通讯作者:
    Yuwei Hua
Theoretical analysis and multi-objective optimization for gradient engineering material arresting system.
梯度工程材料拦阻系统理论分析与多目标优化
Issues for Event Monitoring in Event-Driven Wireless Sensor Networks
事件驱动的无线传感器网络中的事件监控问题

Xianfeng Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xianfeng Yang', 18)}}的其他基金

RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Stochastic Simulation Platform for Assessing Safety Performance of Autonomous Vehicles in Winter Seasons
合作研究:OAC Core:用于评估冬季自动驾驶汽车安全性能的随机仿真平台
  • 批准号:
    2234292
  • 财政年份:
    2022
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Stochastic Simulation Platform for Assessing Safety Performance of Autonomous Vehicles in Winter Seasons
合作研究:OAC Core:用于评估冬季自动驾驶汽车安全性能的随机仿真平台
  • 批准号:
    2106991
  • 财政年份:
    2021
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems
职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式
  • 批准号:
    2047268
  • 财政年份:
    2021
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant

相似国自然基金

面向空地协同交管的物理层安全性能度量理论与优化方法
  • 批准号:
    62301076
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机理和数据驱动的信息物理制造系统能效优化研究
  • 批准号:
    52311530073
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
云畸变物理模型下多源遥感影像弱监督云检测方法研究
  • 批准号:
    42301384
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多物理目标驱动的多尺度几何建模与优化
  • 批准号:
    62302275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习与物理规律的非均质含水层刻画与最优采样方案研究
  • 批准号:
    42302271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
REU Site: Accelerator and Nuclear Physics
REU 站点:加速器和核物理
  • 批准号:
    2348822
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
REU Site: REU in Theoretical and Experimental Physics
REU 网站:REU 理论与实验物理
  • 批准号:
    2348872
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Continuing Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
  • 批准号:
    2349111
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了