PECASE: The Role of Specific Surface Area and Cation Exchange Capacity in Understanding and Predicting Expansive Soil Behavior

PECASE:比表面积和阳离子交换能力在理解和预测膨胀土行为中的作用

基本信息

  • 批准号:
    0746980
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

Expansive unsaturated soils cover one-fourth of the United States and undergo large amounts of heaving and shrinking due to seasonal moisture changes. These movements often lead to cracking and buckling of the infrastructure built on expansive soils, and result in billions of dollars of damage annually (e.g., Wray & Meyer 2004). Although not life-threatening or cataclysmic as compared to other natural events, expansive soils are certainly a natural hazard. Even though expansive soils have been studied for several decades, all of the idealized models presented to date to predict shrink-swell potential of expansive soils have failed to predict actual soil movement under real conditions where the presence of several cations and clay minerals can influence soil behavior (Hillel 1998). The research goal of this award is to advance the understanding of and prediction methods for macroscopic unsaturated expansive soil behavior through microscopic fundamental soil surface phenomena, such as specific surface area (SSA) and cation exchange capacity (CEC). This will be achieved by improving existing 1-D empirical models and extending the application of a physicochemical discrete element method (DEM) computer model to incorporate expansive soil movement. Understanding expansive soil behavior under various environmental conditions will allow the design of robust foundation systems using life-cycle performance as the driving factor in choice of design. This innovative unsaturated soils research program will be woven into several important high-impact educational components in order to bridge the gap between geotechnical theory and geotechnical practice. Understanding expansive soil behavior using microscopic soil surface phenomena will advance the state-of-knowledge and practice in geotechnical engineering by allowing researchers and practitioners to accurately and repeatedly predict macroscopic expansive soil behavior in a way that is not currently available. The improvement on existing empirical models for expansive soil movement prediction using microscopic soil parameters, such as SSA and CEC, is an immediate practical necessity for the geotechnical engineering profession. It is also essential to develop a physically meaningful mathematical model that utilizes a microlevel understanding of particles and interparticle forces to further advance our fundamental knowledge of expansive soil behavior. Merging physicochemical and unsaturated soil mechanics theories into a DEM will provide insight into observed laboratory and in situ behavior and speed progress toward a solution to a complex and expensive problem. The topic of expansive soils is not only compelling from a scientific perspective, but a social perspective as well. The microscopic, particle-particle understanding of expansive soil behavior will help to predict the macroscopic shrink-swell behavior that causes in the United States an estimated $15 billion dollars in annual damage to infrastructure. To initiate this improvement, students will be taught about the important role that geotechnical engineer?s play within our society to broaden their career path opportunities as well as increase, enhance and diversify our undergraduate civil engineering population. This enhanced undergraduate student population will feed a more talented and diverse graduate student population which will produce a more educated workforce. In time, this extensive network of civil engineers can dispel the poor public perception of engineers and increase their status in society. Similar to current practices and successes, the PI will focus on the recruitment and retention of women and minorities in order to enhance and diversify the engineering experience.
膨胀性非饱和土覆盖了美国四分之一的土地,由于季节性的水分变化,它会经历大量的起伏和收缩。这些运动通常导致建造在膨胀土上的基础设施的开裂和屈曲,并且每年导致数十亿美元的损失(例如,Wray Meyer 2004)。 虽然与其他自然事件相比不会危及生命或造成灾难,但膨胀土肯定是一种自然灾害。 尽管膨胀土已经研究了几十年,但迄今为止提出的所有用于预测膨胀土收缩-膨胀潜力的理想化模型都未能预测真实的条件下的实际土壤运动,在这些条件下,几种阳离子和粘土矿物的存在会影响土壤行为(Hillel 1998)。 该奖项的研究目标是通过微观的基本土壤表面现象,如比表面积(SSA)和阳离子交换容量(CEC),促进对宏观非饱和膨胀土行为的理解和预测方法。 这将通过改进现有的1-D经验模型和扩展物理化学离散元法(DEM)计算机模型的应用,将膨胀土运动。 了解膨胀土在各种环境条件下的行为,将允许使用生命周期性能作为设计选择的驱动因素的鲁棒基础系统的设计。 这个创新的非饱和土研究计划将被编织成几个重要的高影响力的教育组成部分,以弥合岩土工程理论和岩土工程实践之间的差距。 利用微观土壤表面现象了解膨胀土的行为将通过允许研究人员和从业人员以目前不可用的方式准确和重复地预测宏观膨胀土行为来推进岩土工程中的知识和实践。 对现有的经验模型进行改进,利用微观土参数,如SSA和CEC的膨胀土运动预测,是岩土工程专业的迫切实际需要。 同样重要的是,开发一个物理上有意义的数学模型,利用微观层次的理解颗粒和颗粒间的力量,以进一步推进我们的膨胀土行为的基础知识。将物理化学和非饱和土力学理论合并到DEM中将提供对观察到的实验室和现场行为的深入了解,并加快解决复杂和昂贵问题的进展。膨胀土的话题不仅从科学的角度来看是引人注目的,而且从社会的角度来看也是如此。 对膨胀土行为的微观、颗粒-颗粒理解将有助于预测宏观收缩-膨胀行为,这种行为在美国每年造成的基础设施损失估计为150亿美元。 为了启动这一改进,学生将被教导的重要作用,岩土工程师?我们在社会中发挥作用,以扩大他们的职业道路的机会,以及增加,提高和多样化我们的本科土木工程人口。 这一增强的本科生人口将养活一个更有才华和多样化的研究生人口,这将产生一个更受过教育的劳动力。 随着时间的推移,这个广泛的土木工程师网络可以消除公众对工程师的不良看法,提高他们的社会地位。与目前的做法和成功经验类似,PI将侧重于招聘和留住妇女和少数民族,以增强工程经验并使其多样化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Cerato其他文献

Amy Cerato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Cerato', 18)}}的其他基金

RAPID: Large-Scale Shake Table Test to Quantify Seismic Response of Helical Piles in Dry Sand
RAPID:大规模振动台试验量化干砂中螺旋桩的地震响应
  • 批准号:
    1624153
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
  • 批准号:
    2317664
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242366
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Unravelling the role of cell-specific interleukin-1B during cerebrovascular inflammation after stroke
揭示细胞特异性白细胞介素 1B 在中风后脑血管炎症中的作用
  • 批准号:
    2896596
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Interrogating a white matter degeneration-specific astrocyte reactivity state and its role in governing repair-associated microglia specification and function.
询问白质变性特异性星形胶质细胞反应状态及其在控制修复相关小胶质细胞规格和功能中的作用。
  • 批准号:
    10660874
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
The Role of Sex Hormones in Stroke Risk: A Sex-Specific Integrative Omics Analysis in the NHLBI Trans-Omics for Precision Medicine Cohorts
性激素在中风风险中的作用:精准医学队列 NHLBI 跨组学中性别特异性综合组学分析
  • 批准号:
    10657840
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Role of glucagon-like peptide-1 signaling in mediating sensory-specific satiety
胰高血糖素样肽-1 信号传导在介导感觉特异性饱腹感中的作用
  • 批准号:
    10750216
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Tissue-specific role of aberrant mitochondrial Ca2+ uptake in respiratory and limb muscle dysfunction in ALS
异常线粒体 Ca2 摄取在 ALS 呼吸和肢体肌肉功能障碍中的组织特异性作用
  • 批准号:
    10841776
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Role of Cell Type-Specific Molecular Rhythm Disruption in Alcohol Use Disorder
细胞类型特异性分子节律破坏在酒精使用障碍中的作用
  • 批准号:
    10725280
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Investigating the role of astrocyte specific NFIA during initiation and progression of AD pathogenesis
研究星形胶质细胞特异性 NFIA 在 AD 发病机制的起始和进展过程中的作用
  • 批准号:
    10722872
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了