CAREER: Scalable Image Search and Recognition: Learning to Efficiently Leverage Incomplete Information
职业:可扩展图像搜索和识别:学习有效利用不完整信息
基本信息
- 批准号:0747356
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractTitle: Scalable Image Search and Recognition: Learning to Efficiently Leverage Incomplete InformationPI: Kristen GraumanInstitution: The University of Texas at AustinAs it becomes increasingly feasible to capture, transmit, and store image and video content on a large scale, the need for machine vision algorithms capable of interpreting it is undeniable. The opportunities appear vast, but progress towards large-scale visual recognition hinges on the development of computationally efficient methods that can effectively leverage minimal supervision. The proposed research considers how informative but incomplete cues can contribute to the learning process, with the goal of enabling large volumes of visual data to be efficiently organized and queried, and a greater number of visual categories to be recognized.This project intends to advance the scale of the recognition problem by using fragments of supervision, even when they are inexact or dynamic. The PI and her team will develop methods to allow very large image databases to be searched according to distance functions inferred from sparse similarity constraints. They will consider visual category learning scenarios where the system itself actively requests only the most useful information, and integrates ambiguous cues from external modalities such as text. As knowledge about an image collection evolves over time, so must the associated search structure. The PI will investigate ways to adapt image indexing techniques according to dynamic constraints. The proposed technical plan calls for a combination of ideas from vision, learning, and algorithms. Scalable recognition and image search will affect the extent to which visual data can be accessed and mined, making this work relevant to other scientific disciplines where images capture vital information but currently lack proper tools for large-scale analysis. The project also entails complementary educational and outreach activities aimed at engaging students in research, furthering communication across related areas, and encouraging young students to consider studying computer science or engineering.Updates will be available from: http://www.cs.utexas.edu/¡grauman/
摘要标题:可扩展的图像搜索和识别:学习有效利用不完整信息PI:Kristen Grauman机构:德克萨斯大学奥斯汀分校随着大规模捕获,传输和存储图像和视频内容变得越来越可行,对机器视觉算法的需求能够解释它是不可否认的。机会似乎很大,但大规模视觉识别的进展取决于计算效率高的方法的发展,这些方法可以有效地利用最小的监督。建议的研究考虑如何信息丰富,但不完整的线索可以有助于学习过程中,使大量的视觉数据被有效地组织和查询的目标,和更多的视觉类别被recognized.This项目的目的是通过使用片段的监督,即使是不准确的或动态的识别问题的规模。PI和她的团队将开发允许根据从稀疏相似性约束推断的距离函数搜索非常大的图像数据库的方法。他们将考虑视觉类别学习场景,其中系统本身只主动请求最有用的信息,并整合来自外部模态(如文本)的模糊线索。随着关于图像集合的知识随着时间的推移而发展,相关联的搜索结构也必须如此。PI将研究如何根据动态约束调整图像索引技术。拟议的技术计划需要结合视觉,学习和算法的想法。可扩展的识别和图像搜索将影响视觉数据的访问和挖掘程度,使这项工作与其他科学学科相关,其中图像捕获重要信息,但目前缺乏适当的大规模分析工具。该项目还需要补充教育和推广活动,旨在吸引学生参与研究,促进相关领域的交流,并鼓励年轻学生考虑学习计算机科学或工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristen Grauman其他文献
Learning to Map Efficiently by Active Echolocation
学习通过主动回声定位有效地绘制地图
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xixi Hu;Senthil Purushwalkam;David Harwath;Kristen Grauman - 通讯作者:
Kristen Grauman
A task-driven intelligent workspace system to provide guidance feedback
- DOI:
10.1016/j.cviu.2009.12.009 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:
- 作者:
M.S. Ryoo;Kristen Grauman;J.K. Aggarwal - 通讯作者:
J.K. Aggarwal
ActiveRIR: Active Audio-Visual Exploration for Acoustic Environment Modeling
ActiveRIR:声学环境建模的主动视听探索
- DOI:
10.48550/arxiv.2404.16216 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Arjun Somayazulu;Sagnik Majumder;Changan Chen;Kristen Grauman - 通讯作者:
Kristen Grauman
Action2Sound: Ambient-Aware Generation of Action Sounds from Egocentric Videos
Action2Sound:从以自我为中心的视频中生成环境感知的动作声音
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Changan Chen;Puyuan Peng;Ami Baid;Zihui Xue;Wei;David Harwarth;Kristen Grauman - 通讯作者:
Kristen Grauman
Kristen Grauman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristen Grauman', 18)}}的其他基金
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-TIme Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
- 批准号:
2119115 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Learning to Summarize User-Generated Video
RI:媒介:协作研究:学习总结用户生成的视频
- 批准号:
1514118 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Semantically Discriminative : Guiding Mid-Level Representations for Visual Object Recognition with External Knowledge
RI:媒介:协作研究:语义判别:利用外部知识指导视觉对象识别的中级表示
- 批准号:
1065390 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
A scalable non-intrusive image annotation method using eye tracking for training deep learning models in radiology
一种使用眼动追踪训练放射学深度学习模型的可扩展非侵入式图像注释方法
- 批准号:
10133070 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
I-Corps: Scalable Storage of Whole Slide Images and Fast Retrieval of Tiles for Next-Generation Image Analytics
I-Corps:整个幻灯片图像的可扩展存储和用于下一代图像分析的图块的快速检索
- 批准号:
2024429 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Scalable Uncertainty Quantification for Data-Driven PET Image Reconstruction
用于数据驱动 PET 图像重建的可扩展不确定性量化
- 批准号:
2298269 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Studentship
mIQa: A Highly Scalable and Customizable Platform for Medical Image Quality Assessment - Phase II
mIQa:高度可扩展和可定制的医学图像质量评估平台 - 第二阶段
- 批准号:
10183329 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
mIQa: A Highly Scalable and Customizable Platform for Medical Image Quality Assessment - Phase II
mIQa:高度可扩展和可定制的医学图像质量评估平台 - 第二阶段
- 批准号:
10010814 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
"Scalable Methods of Text and Structure Recognition for the Full-Text Digitization of Historical Prints" Part 1.B: Image Optimization
“用于历史印刷品全文数字化的文本和结构识别的可扩展方法”第 1.B 部分:图像优化
- 批准号:
394343055 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
I-Corps: Scalable Storage of Whole Slide Images and Fast Retrieval of Tiles for Next-Generation Image Analytics
I-Corps:整个幻灯片图像的可扩展存储和用于下一代图像分析的图块的快速检索
- 批准号:
1841752 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CRII: CHS: Scalable Interactive Image Segmentation through Hierarchical, Query-Driven Processing
CRII:CHS:通过分层、查询驱动的处理进行可扩展的交互式图像分割
- 批准号:
1657020 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
I/UCRC FRP: Collaborative Research: Scalable and Power-Efficient Compressive Sensing CMOS Image Sensors and Reconstruction Circuits
I/UCRC FRP:合作研究:可扩展且节能的压缩传感 CMOS 图像传感器和重建电路
- 批准号:
1535658 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Scalable Image Sentiment Analysis Engine
可扩展的图像情感分析引擎
- 批准号:
131987 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Feasibility Studies