I-Corps: Scalable Storage of Whole Slide Images and Fast Retrieval of Tiles for Next-Generation Image Analytics

I-Corps:整个幻灯片图像的可扩展存储和用于下一代图像分析的图块的快速检索

基本信息

  • 批准号:
    2024429
  • 负责人:
  • 金额:
    $ 1.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is pivoted around the emerging whole slide imaging market segment in digital pathology. The digital pathology market is predicted to reach over $800 million by 2025. The motivation of this project stems from the gigabyte size of whole slide images (WSIs), which are digital images of glass slides produced at near optical resolution. With rapid increase in the number of WSIs produced by hospitals and pathology labs, the storage and management of WSIs has become an urgent problem to tackle for next-generation image analytics. The commercial viability of the project can significantly impact researchers, medical professionals, software developers, and IT staff who wish to manage large number of WSIs using modern cluster computing and big data techniques. Thus, next-generation image analytics (e.g., using deep learning) for automatic detection and analysis of cellular and morphological features in human tissues can be performed faster on large numbers of WSIs. The potential societal benefit of the project includes enabling improved diagnosis of diseases by pathologists using next-generation image analytics and the creation of a tech startup leading to new jobs. This project will provide training to two Ph.D. students from underrepresented groups in STEM.This I-Corps project is based on a software technology that aims to solve the fundamental problem of scalable storage of WSIs and fast retrieval of tiles using a commodity cluster and big data techniques. The value proposition of the technology is efficient and cost-effective storage of large-scale WSIs and fast retrieval of tiles to enable next-generation image analytics for human disease diagnosis. The technology encompasses intelligent data partitioning using space-filling curves, in-memory data structures, and effective organization of tiles to enable fast retrieval of tiles during image analysis. It employs space-efficient storage formats to maximize storage efficiency. On an average, it required a few seconds to retrieve a single tile on 80 WSIs using a 16-node cluster. Therefore, we believe next-generation image analytics on WSIs (e.g., using deep learning) can run faster on large number of WSIs, which can consume terabytes of storage, through faster access of image tiles. As the technology relies on commodity hardware and open source software, it is cost-effective and can be easily deployed as a product or a service. The technology has the potential to advance the state-of-the-art in WSI storage and management using a big data approach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目的更广泛影响/商业潜力以数字病理学中新兴的整个幻灯片成像市场为中心。预计到 2025 年,数字病理学市场将达到 8 亿美元以上。该项目的动机源于千兆字节大小的整个载玻片图像 (WSI),这是以接近光学分辨率生成的玻璃载玻片的数字图像。随着医院和病理实验室产生的 WSI 数量迅速增加,WSI 的存储和管理已成为下一代图像分析亟待解决的问题。该项目的商业可行性可以极大地影响希望使用现代集群计算和大数据技术管理大量 WSI 的研究人员、医疗专业人员、软件开发人员和 IT 人员。因此,用于自动检测和分析人体组织中的细胞和形态特征的下一代图像分析(例如,使用深度学习)可以在大量 WSI 上更快地执行。该项目的潜在社会效益包括病理学家使用下一代图像分析技术改进疾病诊断,以及创建一家科技初创公司以创造新的就业机会。该项目将为两名博士提供培训。来自 STEM 中代表性不足群体的学生。这个 I-Corps 项目基于软件技术,旨在解决 WSI 可扩展存储和使用商品集群和大数据技术快速检索图块的基本问题。该技术的价值主张是高效且经济高效地存储大规模 WSI 以及快速检索图块,从而实现用于人类疾病诊断的下一代图像分析。该技术包括使用空间填充曲线、内存中数据结构和有效组织图块的智能数据分区,以便在图像分析过程中快速检索图块。它采用节省空间的存储格式来最大限度地提高存储效率。平均而言,使用 16 节点集群在 80 个 WSI 上检索单个图块需要几秒钟的时间。因此,我们相信 WSI 上的下一代图像分析(例如,使用深度学习)可以通过更快地访问图像图块,在大量 WSI 上运行得更快,这些 WSI 可能会消耗 TB 的存储空间。由于该技术依赖于商用硬件和开源软件,因此具有成本效益,并且可以轻松部署为产品或服务。该技术有潜力利用大数据方法推进 WSI 存储和管理的最先进水平。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large-scale storage of whole slide images and fast retrieval of tiles using DRAM
  • DOI:
    10.1117/12.2564694
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel E. Lopez Barron;P. Rao;D. Rao;O. Tawfik;Arun Zachariah
  • 通讯作者:
    Daniel E. Lopez Barron;P. Rao;D. Rao;O. Tawfik;Arun Zachariah
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Praveen Rao其他文献

Carvajal Syndrome - A Variant Of Arrhythmogenic Right Ventricular Cardiomyopathy
卡瓦哈尔综合征 - 致心律失常右室心肌病的一种变体
  • DOI:
    10.1016/j.cardfail.2022.03.314
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Justin Arunthamakun;Praveen Rao;Amit Alam
  • 通讯作者:
    Amit Alam
Claims data analysis of provider-to-provider tele-mentoring program impact on opioid prescribing in Missouri.
密苏里州提供者对提供者远程指导计划对阿片类药物处方影响的索赔数据分析。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olabode Ogundele;Xing Song;Praveen Rao;Tracy Greever;Suzanne A Boren;Karen Edison;Douglas Burgess;Mirna Becevic
  • 通讯作者:
    Mirna Becevic
The Case for Designing Data-Intensive Cloud-Based Healthcare Applications
设计数据密集型基于云的医疗保健应用程序的案例
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Bhagavan;K. Alsultan;Praveen Rao
  • 通讯作者:
    Praveen Rao
When The “Genes” No Longer Fit: An Unusual Presentation of LMNA-related Cardiomyopathy
  • DOI:
    10.1016/j.cardfail.2020.09.307
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Justin Arunthamakun;Timothy Gong;Joshua Rutland;Matthew Wainwright;Dan Meyer;William C. Roberts;Praveen Rao;Amit Alam;Shelley Hall
  • 通讯作者:
    Shelley Hall
020 - Ventricular Arrhythmias before LVAD Do Not Increase Risk of Mortality or Rehospitalization
  • DOI:
    10.1016/j.cardfail.2016.06.037
  • 发表时间:
    2016-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Praveen Rao;David Raymer;Christopher Sparrow;Michael Nassif;Eric Novak;Daniel Cooper;Shane LaRue;Gregory Ewald;Justin Vader
  • 通讯作者:
    Justin Vader

Praveen Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Praveen Rao', 18)}}的其他基金

CC* Integration-Small: Harnessing FABRIC for Scalable Human Genome Sequence Analysis
CC* Integration-Small:利用 FABRIC 进行可扩展的人类基因组序列分析
  • 批准号:
    2201583
  • 财政年份:
    2022
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Standard Grant
RAPID: Democratizing Genome Sequence Analysis for COVID-19 Using CloudLab
RAPID:使用 CloudLab 实现 COVID-19 基因组序列分析的大众化
  • 批准号:
    2034247
  • 财政年份:
    2020
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Standard Grant
I-Corps: Scalable Storage of Whole Slide Images and Fast Retrieval of Tiles for Next-Generation Image Analytics
I-Corps:整个幻灯片图像的可扩展存储和用于下一代图像分析的图块的快速检索
  • 批准号:
    1841752
  • 财政年份:
    2018
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Standard Grant
I-Corps: Scalable Knowledge Management for Risk Analysis in Finance
I-Corps:用于金融风险分析的可扩展知识管理
  • 批准号:
    1620023
  • 财政年份:
    2016
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Standard Grant
III: Small: Scalable RDF Query Processing Using a Cloud Infrastructure
III:小型:使用云基础设施进行可扩展的 RDF 查询处理
  • 批准号:
    1115871
  • 财政年份:
    2011
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Developing advanced potassium-sulfur batteries for scalable energy storage
开发先进的钾硫电池用于可扩展的储能
  • 批准号:
    DE230101011
  • 财政年份:
    2023
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Discovery Early Career Researcher Award
A scalable direct air carbon capture and storage system that removes the same quantity of CO2 per year as 3,000 trees
可扩展的直接空气碳捕获和储存系统,每年去除的二氧化碳量相当于 3,000 棵树的二氧化碳量
  • 批准号:
    10053502
  • 财政年份:
    2023
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Collaborative R&D
Aqueous-based potassium ion batteries for scalable energy storage
用于可扩展储能的水基钾离子电池
  • 批准号:
    DE220100656
  • 财政年份:
    2022
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Discovery Early Career Researcher Award
SBIR Phase I: Massively scalable storage of nucleic acids using barcoded polymer packets
SBIR 第一阶段:使用条形码聚合物包大规模扩展核酸存储
  • 批准号:
    2136447
  • 财政年份:
    2022
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Standard Grant
Scalable high-density hydrogen storage by nano-bubbles in layered materials
通过层状材料中的纳米气泡进行可扩展的高密度储氢
  • 批准号:
    LP200300577
  • 财政年份:
    2022
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Linkage Projects
CC* Data Storage: Distributed, Fast, Scalable Infrastructure for Emerging Media Research Data
CC* 数据存储:新兴媒体研究数据的分布式、快速、可扩展基础设施
  • 批准号:
    2232817
  • 财政年份:
    2022
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Standard Grant
CC* Data Storage: Flexible Affordable Scalable Technology for Research Storage (FAST-Research Storage)
CC* 数据存储:用于研究存储的灵活且经济实惠的可扩展技术(FAST-Research Storage)
  • 批准号:
    2232810
  • 财政年份:
    2022
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Standard Grant
Highly Integrated, Scalable Motor and Inverter Module with Flywheel Energy Storage and E-Axle applications
高度集成、可扩展的电机和逆变器模块,具有飞轮储能和电轴应用
  • 批准号:
    94722
  • 财政年份:
    2021
  • 资助金额:
    $ 1.62万
  • 项目类别:
    BEIS-Funded Programmes
Scalable fabrication of on-chip Li CO2 batteries for efficient electrocatalysts screening and energy storage mechanism study
可扩展制造片上锂二氧化碳电池,用于高效电催化剂筛选和储能机制研究
  • 批准号:
    EP/V002260/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Research Grant
Tepeo ZEB and the pathway to domestic heat decarbonisation - a scalable manufacturing blueprint for ceramic-based thermal storage cores
Tepeo ZEB 和家庭热脱碳之路 - 陶瓷蓄热芯的可扩展制造蓝图
  • 批准号:
    10014770
  • 财政年份:
    2021
  • 资助金额:
    $ 1.62万
  • 项目类别:
    Investment Accelerator
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了