CAREER: Algebraic Methods in Low-Dimensional Topology
职业:低维拓扑中的代数方法
基本信息
- 批准号:0748458
- 负责人:
- 金额:$ 44.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-15 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks to resolve specific questions in the area of 3- dimensional manifolds, knot theory, mapping class groups, and contact topology using a combination of geometric, topological and algebraic techniques. Tools from functional analysis and von Neumann algebras are also being used. The PI proposes to undertake the following projects. (1) Make significant advances toward the classification of the knot concordance group. In particular, classify the successive quotients of its (n)-solvable filtration and find new structure in the group. (2) Establish a higher-order Heegaard Floer homology theory that categorifies the higher-order Alexander polynomials defined by the PI. Use this to show that certain classical families of topologically slice knots are not smoothly slice. (3) Define new interesting canonical subgroups of the mapping class group related to the generalized Johnson subgroups and show their homology groups are infinitely generated. (3) Determine the precise relationship between certain subgroups of the mapping class group of a surface and the topology of their mapping tori (which are 3-manifolds). (4) Understand a precise relationship between transverse knots in S^3 and contact structures of arbitrary 3-manifolds that arise as cyclic and simple branched covers. Use this relationship to better understand the geometric invariants of a contact structure such as the support genus and binding number.Understanding the geometric structure of objects in 3-dimensional space is of crucial scientific importance. From cancer treatments based on the knotting of cellular DNA, to antiviral drugs based on the geometrical shapes of proteins, to non-invasive visualization of the shape of the heart, to contemplating the ``shape'' of space-time itself, we seek precise mathematical descriptions of 3-dimensional objects. When one thinks of a precise mathematical description, one often thinks in terms of numbers, but ordinary numbers are insufficient to capture the complexities of our world. Multiplication of ordinary numbers is ``commutative.'' However, the physics of the twentieth century has taught us that matter and energy cannot be described merely by numbers. Rather, vectors and matrices are required, and multiplication of matrices is not commutative, that is AB does not usually equal BA. Every physical interaction is thus based on noncommutative algebra. This project is investigating how this noncommutative algebra yields a mathematical description of the geometric structure of 3-dimensional space and of objects in 3- dimensional space. Of particular importance is the manner in which closed strings in 3-dimensional space are knotted in 3- and in 4- dimensions. The PI will use non-commutative mathematical objects to better understand the knotting of strings and 3-dimensional spaces in general.
这个项目寻求使用几何、拓扑和代数技术的组合来解决三维流形、纽结理论、映射类群和接触拓扑学领域的具体问题。泛函分析和von Neumann代数的工具也被使用。国际和平研究所建议开展以下项目。(1)在纽结和谐组的分类方面取得重大进展。特别地,对其(N)-可解滤子的连续商进行了分类,并在群中找到了新的结构。(2)建立了高阶Heegaard Floer同调理论,对PI定义的高阶Alexander多项式进行了分类。使用它来表明某些经典拓扑片纽结不是光滑切片的。(3)定义了与广义Johnson子群相关的映射类群的新的有趣的正则子群,并证明了它们的同调群是无限生成的。(3)确定曲面的映射类群的某些子群与其映射环面(3-流形)的拓扑之间的精确关系。(4)理解S[3]中的横向纽结与任意三维流形的接触结构之间的精确关系,这些结构作为循环和单分支覆盖出现。利用这种关系可以更好地理解接触结构的几何不变量,如支承亏格和结合数。理解三维空间中物体的几何结构具有至关重要的科学意义。从基于细胞DNA打结的癌症治疗,到基于蛋白质几何形状的抗病毒药物,再到心脏形状的非侵入性可视化,再到思考时空本身的“形状”,我们寻求对三维对象的精确数学描述。当人们想到精确的数学描述时,人们通常会用数字来思考,但普通的数字不足以反映我们世界的复杂性。普通数的乘法是“可交换的”。然而,二十世纪的物理学告诉我们,物质和能量不能仅仅用数字来描述。相反,向量和矩阵是必需的,而矩阵的乘法是不可交换的,也就是说,AB通常不等于BA。因此,每个物理相互作用都建立在非对易代数的基础上。这个项目正在研究这个非对易代数如何产生三维空间和三维空间中物体的几何结构的数学描述。特别重要的是3维空间中闭合弦在3维和4维空间中打结的方式。PI将使用非交换的数学对象来更好地理解弦和一般3维空间的打结。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shelly Harvey其他文献
Shelly Harvey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shelly Harvey', 18)}}的其他基金
2022 Texas Women in Math Symposium
2022 年德克萨斯州女性数学研讨会
- 批准号:
2139109 - 财政年份:2021
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
RTG: Building Communities in the Mathematical Sciences at Rice University
RTG:在莱斯大学建立数学科学社区
- 批准号:
1745670 - 财政年份:2018
- 资助金额:
$ 44.33万 - 项目类别:
Continuing Grant
Noncommutative and Heegaard Floer Methods in Low-Dimensional Topology
低维拓扑中的非交换和 Heegaard Florer 方法
- 批准号:
1309070 - 财政年份:2013
- 资助金额:
$ 44.33万 - 项目类别:
Continuing Grant
3-Manifolds: Heegaard Splittings, the Curve Complex, and Hyperbolic Geometry
3-流形:Heegaard 分裂、复合曲线和双曲几何
- 批准号:
1308209 - 财政年份:2013
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
Knot Theory: 3 and 4-dimensional manifolds
纽结理论:3 维和 4 维流形
- 批准号:
1309081 - 财政年份:2013
- 资助金额:
$ 44.33万 - 项目类别:
Continuing Grant
Applications of Noncommutative Algebra to Low-Dimensional Topology and Geometry
非交换代数在低维拓扑和几何中的应用
- 批准号:
0539044 - 财政年份:2005
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic Methods for Quantified Constraints
量化约束的代数方法
- 批准号:
EP/X03190X/1 - 财政年份:2024
- 资助金额:
$ 44.33万 - 项目类别:
Research Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
- 批准号:
2316181 - 财政年份:2023
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
- 批准号:
RGPIN-2020-05481 - 财政年份:2022
- 资助金额:
$ 44.33万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2022
- 资助金额:
$ 44.33万 - 项目类别:
Discovery Grants Program - Individual
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
- 批准号:
RGPIN-2022-03116 - 财政年份:2022
- 资助金额:
$ 44.33万 - 项目类别:
Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
- 批准号:
RGPIN-2018-03880 - 财政年份:2022
- 资助金额:
$ 44.33万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
- 批准号:
2139462 - 财政年份:2022
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
Algebraic Topology: Methods, Computation, and Science 2022
代数拓扑:方法、计算和科学 2022
- 批准号:
2208855 - 财政年份:2022
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
A study of complex spherical codes and designs by algebraic methods
用代数方法研究复杂的球形代码和设计
- 批准号:
22K03410 - 财政年份:2022
- 资助金额:
$ 44.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)