Novel Scalable Algorithms in Density Functional Theory Calculations

密度泛函理论计算中的新型可扩展算法

基本信息

  • 批准号:
    0749074
  • 负责人:
  • 金额:
    $ 7.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Title: Novel Scalable Algorithms in Density Functional Theory CalculationsAbstract:Density functional theory (DFT) is one of the great scientific achievements of the 20th century. The fundamental importance of DFT originates from its much simplified description of the law of the fundamental building blocks of materials over the Schrodinger equation. DFT has had significant impact in a broad range of fields including condensed matter physics, quantum chemistry and materials science. However, first principals DFT calculations for complex materials often lead to computational problems of enormous dimension. Without efficient scalable algorithms, the sheer size of the problems can easily overwhelm even the most powerful supercomputers.One major computational bottleneck in DFT calculations is the repeated solution of large scale eigenproblems inside a self-consistent loop.Novel algorithms are needed in order to significantly reduce the computational cost without scarifying accuracy. We will investigate filtering approaches based on the recently developed Chebyshev filtered subspace iteration (CheFSI) method.CheFSI utilizes Chebyshev polynomials for adaptive subspace filtering, it is close to an eigenvector-free approach except that the first step of the self-consistent loop requires a diagonalization. The proposed research will further investigate and develop novel eigenvector-free algorithms based on polynomial filtering and preconditioning techniques for the nonlinear eigenvalue problems in DFT calculations. Emphasis will also be placed on extending the nonlinear subspace filtering techniques developed in the real-space setting to the widely used plane-wave setting. The goal is to make first principals DFT calculations more efficient and feasible for the study of increasingly more complex materials.Large scale eigenvalue related problems are ubiquitous in science and engineering and they often constitute the computational bottlenecks. Advances in scalable eigen-algorithms that can significantly reduce computational cost while maintaining accuracy will have broad and far-reaching intellectual impact. Besides materials science, the filtering and preconditioning techniques to be investigated also have potential applications in a broad range of areas such as pattern recognition, information retrieval and data mining, and other dimensionality reduction approaches for massive data sets.
标题:密度泛函理论计算中的新型可扩展算法摘要:密度泛函理论(DFT)是20世纪最伟大的科学成就之一。 DFT 的根本重要性源于它对薛定谔方程上材料基本构件定律的极其简化的描述。 DFT 在凝聚态物理、量子化学和材料科学等广泛领域产生了重大影响。然而,复杂材料的第一原理 DFT 计算通常会导致巨大维度的计算问题。如果没有高效的可扩展算法,问题的庞大规模甚至很容易压倒最强大的超级计算机。DFT 计算中的一个主要计算瓶颈是在自洽循环内重复求解大规模特征值问题。需要新的算法来显着降低计算成本而不牺牲精度。我们将研究基于最近开发的切比雪夫滤波子空间迭代(CheFSI)方法的滤波方法。CheFSI利用切比雪夫多项式进行自适应子空间滤波,它接近无特征向量方法,只是自洽循环的第一步需要对角化。所提出的研究将进一步研究和开发基于多项式滤波和预处理技术的新型无特征向量算法,用于 DFT 计算中的非线性特征值问题。重点还将放在将实空间设置中开发的非线性子空间滤波技术扩展到广泛使用的平面波设置上。目标是使第一原理 DFT 计算更加高效、可行,以研究日益复杂的材料。大规模特征值相关问题在科学和工程中普遍存在,并且常常构成计算瓶颈。可扩展的特征算法的进步可以显着降低计算成本,同时保持准确性,这将产生广泛而深远的智力影响。 除了材料科学之外,要研究的过滤和预处理技术在模式识别、信息检索和数据挖掘以及其他海量数据集的降维方法等广泛领域也具有潜在的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunkai Zhou其他文献

On the eigenvalues of specially low-rank perturbed matrices
  • DOI:
    10.1016/j.amc.2011.05.026
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunkai Zhou
  • 通讯作者:
    Yunkai Zhou
A partitioned shift-without-invert algorithm to improve parallel eigensolution efficiency in real-space electronic transport
一种提高实空间电子传输中并行特征解效率的分区移位无反转算法
  • DOI:
    10.1016/j.cpc.2016.05.015
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Feldman;Yunkai Zhou
  • 通讯作者:
    Yunkai Zhou
Trapping mechanism of metastable β-Ga disclosed by its lattice stability optimization and nucleation behavior exploration
  • DOI:
    10.1016/j.calphad.2022.102475
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yanhui Zhang;Yiqi Fang;Shidong Feng;Deqiang Ma;Yunkai Zhou;Li-Min Wang
  • 通讯作者:
    Li-Min Wang
Numerical methods for large scale matrix equations with applications in LTI system model reduction
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunkai Zhou
  • 通讯作者:
    Yunkai Zhou
Toward end-to-end fairness: a framework for the allocation of multiple prioritized resources
实现端到端公平:多个优先资源分配的框架

Yunkai Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunkai Zhou', 18)}}的其他基金

Intrinsically Parallel Spectrum Decomposition Algorithm for Large Eigenvalue Problems
大特征值问题的本质并行谱分解算法
  • 批准号:
    1522587
  • 财政年份:
    2015
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Solving large-scale eigen-related problems: Efficient and scalable algorithms
解决大规模特征相关问题:高效且可扩展的算法
  • 批准号:
    1228271
  • 财政年份:
    2012
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Design and Implementation of New Scalable Algorithms in Nano-Scale Materials Science
纳米材料科学中新的可扩展算法的设计和实现
  • 批准号:
    0727194
  • 财政年份:
    2007
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
CAREER: Fast Scalable Graph Algorithms
职业:快速可扩展图算法
  • 批准号:
    2340048
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
  • 批准号:
    2327456
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
  • 批准号:
    2330054
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
  • 批准号:
    2238486
  • 财政年份:
    2023
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
  • 批准号:
    2343869
  • 财政年份:
    2023
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2341725
  • 财政年份:
    2023
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Robust and scalable algorithms for learning hidden structures in sparse network data with the aid of side information
借助辅助信息学习稀疏网络数据中隐藏结构的鲁棒且可扩展的算法
  • 批准号:
    2311024
  • 财政年份:
    2023
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了