Intrinsically Parallel Spectrum Decomposition Algorithm for Large Eigenvalue Problems
大特征值问题的本质并行谱分解算法
基本信息
- 批准号:1522587
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Eigenvalue problems are of fundamental importance in a wide range of science and engineering disciplines, including electronic structure calculations in materials science, and clustering, ranking, and matching in data science. Large-scale eigenvalue problems arise naturally from significant modern applications in these materials science and data science computations. However, the associated rapid increase in the dimension of the eigenvalue problems can easily overwhelm existing algorithms. This generates pressing demand for more efficient algorithms, especially those that can scale well on modern supercomputers with many thousands of cores. This research project centers on designing highly efficient algorithms for solving large-scale eigenvalue problems and implementing them in robust software that can be effectively utilized by other researchers.The project focuses on the essence of algorithm acceleration for eigenvalue problems, represented by spectrum filtering (both by polynomial filtering and by rational function "preconditioning"). The investigator will study both standard and generalized eigenvalue problems, which often arise from first-principles calculations. The project will use a tailored filtering method as the first step for spectrum estimation and develop a practical spectrum decomposition algorithm that is intrinsically parallel. The spectrum decomposition method is designed to overcome the main difficulties encountered in state-of-the-art spectrum slicing algorithms. The investigator will develop novel approaches such as adaptive Ritz iteration and adaptive selection of (locally) optimal shifts; both techniques are important for achieving efficiency as well as robustness for intrinsically scalable methods. The research will significantly extend the forefront of practical methods for solving large-scale eigenvalue problems. The project will provide useful algorithms and software to facilitate cutting-edge research that requires solving increasingly larger eigenvalue problems.
本征值问题在许多科学和工程学科中都是非常重要的,包括材料科学中的电子结构计算,以及数据科学中的聚类、排序和匹配。在这些材料科学和数据科学计算中,大规模的特征值问题自然产生于重要的现代应用。然而,随之而来的特征值问题维度的快速增加很容易淹没现有的算法。这就产生了对更高效算法的迫切需求,特别是那些可以在拥有数千个内核的现代超级计算机上很好地扩展的算法。本研究以谱滤波(多项式滤波和有理函数“预条件”)为代表,重点研究了特征值问题的算法加速问题,并将其应用于稳健的软件系统中。研究人员将同时研究标准和广义特征值问题,这两个问题通常来自第一原理计算。该项目将使用定制的滤波方法作为频谱估计的第一步,并开发出一种本质上并行的实用频谱分解算法。频谱分解方法是为了克服目前频谱切片算法中遇到的主要困难而设计的。研究人员将开发新的方法,如自适应Ritz迭代和(局部)最优移位的自适应选择;这两种技术对于实现本质上可扩展的方法的效率和稳健性都很重要。该研究将极大地拓展解决大规模特征值问题的实用方法的前沿。该项目将提供有用的算法和软件,以促进需要解决越来越大的特征值问题的尖端研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunkai Zhou其他文献
On the eigenvalues of specially low-rank perturbed matrices
- DOI:
10.1016/j.amc.2011.05.026 - 发表时间:
2011-08 - 期刊:
- 影响因子:0
- 作者:
Yunkai Zhou - 通讯作者:
Yunkai Zhou
A partitioned shift-without-invert algorithm to improve parallel eigensolution efficiency in real-space electronic transport
一种提高实空间电子传输中并行特征解效率的分区移位无反转算法
- DOI:
10.1016/j.cpc.2016.05.015 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
B. Feldman;Yunkai Zhou - 通讯作者:
Yunkai Zhou
Trapping mechanism of metastable β-Ga disclosed by its lattice stability optimization and nucleation behavior exploration
- DOI:
10.1016/j.calphad.2022.102475 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Yanhui Zhang;Yiqi Fang;Shidong Feng;Deqiang Ma;Yunkai Zhou;Li-Min Wang - 通讯作者:
Li-Min Wang
Numerical methods for large scale matrix equations with applications in LTI system model reduction
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Yunkai Zhou - 通讯作者:
Yunkai Zhou
Toward end-to-end fairness: a framework for the allocation of multiple prioritized resources
实现端到端公平:多个优先资源分配的框架
- DOI:
10.1109/pccc.2003.1203735 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Yunkai Zhou;H. Sethu - 通讯作者:
H. Sethu
Yunkai Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yunkai Zhou', 18)}}的其他基金
Solving large-scale eigen-related problems: Efficient and scalable algorithms
解决大规模特征相关问题:高效且可扩展的算法
- 批准号:
1228271 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Novel Scalable Algorithms in Density Functional Theory Calculations
密度泛函理论计算中的新型可扩展算法
- 批准号:
0749074 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Design and Implementation of New Scalable Algorithms in Nano-Scale Materials Science
纳米材料科学中新的可扩展算法的设计和实现
- 批准号:
0727194 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NIRG: Evaluation of interventions with rare events: methods for parallel cluster randomised trials and stepped-wedge cluster randomised trials
NIRG:罕见事件干预措施的评估:平行整群随机试验和阶梯楔形整群随机试验的方法
- 批准号:
MR/X029492/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
CAREER : Towards Exascale Performance of Parallel Applications
职业:迈向并行应用的百亿亿级性能
- 批准号:
2338077 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
GEO OSE Track 2: Enhancing usability of the Parallel Ice Sheet Model (PISM) to accelerate innovative sea-level research
GEO OSE 轨道 2:增强平行冰盖模型 (PISM) 的可用性,以加速创新的海平面研究
- 批准号:
2324718 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Cerebellum-inspired parallel deep learning
受小脑启发的并行深度学习
- 批准号:
EP/X029336/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Intelligently Scalable Multiple Light Sources for Parallel Coherent LiDAR
用于并行相干激光雷达的智能可扩展多光源
- 批准号:
23K22760 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Robust and intelligent parallel-connected GaN power devices
稳健且智能的并联 GaN 功率器件
- 批准号:
24K17265 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Divergence and parallel evolution of boldness in guppies
孔雀鱼胆量的分歧与平行进化
- 批准号:
NE/Y000234/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
- 批准号:
2330054 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
MFB: Massively parallel identification of translation regulatory sequences in human and viral mRNAs
MFB:大规模并行鉴定人类和病毒 mRNA 中的翻译调控序列
- 批准号:
2330451 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant