The Interaction of Bottom-up and Top-down Information in Human Auditory Learning and Object Recognition

人类听觉学习和物体识别中自下而上和自上而下信息的相互作用

基本信息

  • 批准号:
    0749986
  • 负责人:
  • 金额:
    $ 58.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2012-09-30
  • 项目状态:
    已结题

项目摘要

Object recognition is a crucial cognitive task for all sensory modalities. A particular challenge in object recognition is that physically dissimilar stimuli can have the same label (e.g., the same word spoken by different people, or the same face viewed under different lighting conditions), while physically similar stimuli may be labeled differently (e.g., hearing "b" or "p" based on small differences on when the vocal folds start vibrating). In audition, various animal species, but especially humans, have developed an elaborate system for communication based on the discrimination of fine acoustic differences between complex sounds. Speech perception is probably the most remarkable achievement in this domain and one that may influence the overall architecture of auditory cortex. The underlying neural mechanisms are poorly understood, however. With support from the National Science Foundation, Maximilian Riesenhuber and Josef P. Rauschecker of Georgetown University will address this issue by integrating behavioral results with functional magnetic resonance imaging (fMRI) measures of brain activity. The team will apply the insights gained in understanding the neural bases of visual object recognition to auditory object recognition. One study will investigate the neural mechanisms underlying the categorization and discrimination of speech sounds as well as the transformation of bottom-up acoustic information into categorical phonetic information along the cortical auditory hierarchy. The second study will investigate neuronal plasticity in auditory object recognition by training humans on an auditory categorization task involving modified monkey communication calls. By using novel yet natural auditory communication sounds, the investigators will be able to study the interaction of acoustic information and category labeling during learning and during recognition. The findings will be relevant for the understanding of higher-level auditory processing but also for a general understanding of the interactions between sensory and task-specific information in the brain as well as the commonalities and differences in the mechanisms supporting recognition of speech and non-speech sounds in the brain.Understanding the general principles of sensory processing in the brain, and in particular identifying the underlying neural mechanisms across sensory modalities, has implications for education (e.g., second language learning) and in engineering (e.g., the development of neurally-inspired speech recognition systems). The research project will also help train the next generation of scientists, at the graduate and undergraduate level, with a particular focus on underrepresented minorities. At the graduate level, the project directly involves graduate students from Georgetown University's Interdisciplinary PhD Program in Neuroscience, both at the thesis level and for introductory lab rotations. The project will further impact undergraduate education at Georgetown and beyond, with the opportunity for undergraduates to participate in the project as part of their cognitive science curriculum, or during summer internships. The summer outreach program for undergraduate students has a strong focus on minority recruitment through a partnership with Howard University in Washington, DC.
物体识别是所有感觉模态的重要认知任务。对象识别中的一个特定挑战是物理上不同的刺激可以具有相同的标签(例如,不同的人说的同一个词,或者在不同的照明条件下看到的同一张脸),而物理上相似的刺激可能会被不同地标记(例如,基于声带何时开始振动的微小差异听到“B”或“p”)。在听觉方面,各种动物,尤其是人类,已经发展出一套复杂的交流系统,其基础是辨别复杂声音之间细微的声学差异。 言语知觉可能是这一领域最显著的成就,也可能影响听觉皮层的整体结构。然而,对潜在的神经机制知之甚少。在美国国家科学基金会的支持下,乔治敦大学的马克西米利安·里森胡贝尔和约瑟夫·P·劳斯切克将通过将行为结果与大脑活动的功能性磁共振成像(fMRI)测量相结合来解决这个问题。该团队将把在理解视觉物体识别的神经基础中获得的见解应用于听觉物体识别。其中一项研究将探讨语音分类和辨别的神经机制,以及自下而上的声学信息沿着皮层听觉层次转化为分类语音信息的神经机制。第二项研究将通过训练人类进行听觉分类任务,包括修改猴子的通信呼叫,来研究听觉对象识别中的神经元可塑性。通过使用新颖而自然的听觉交流声音,研究人员将能够研究学习和识别过程中声学信息和类别标签的相互作用。这些发现将有助于理解更高层次的听觉处理,也有助于全面了解大脑中感官和特定任务信息之间的相互作用,以及支持大脑中语音和非语音识别的机制的共性和差异。了解大脑中感官处理的一般原理,特别是识别跨感觉模态的潜在神经机制,对教育具有意义(例如,第二语言学习)和工程学(例如,神经启发的语音识别系统的开发)。该研究项目还将帮助培养下一代研究生和本科生科学家,特别关注代表性不足的少数群体。在研究生阶段,该项目直接涉及乔治敦大学神经科学跨学科博士课程的研究生,无论是在论文水平还是在介绍性实验室轮换。该项目将进一步影响乔治敦大学及其他地区的本科教育,本科生有机会参与该项目,作为其认知科学课程的一部分,或在暑期实习期间。针对本科生的暑期外展计划通过与华盛顿的霍华德大学的合作,非常关注少数族裔的招聘。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maximilian Riesenhuber其他文献

Models of object recognition
物体识别模型
  • DOI:
    10.1038/81479
  • 发表时间:
    2000-11-01
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Maximilian Riesenhuber;Tomaso Poggio
  • 通讯作者:
    Tomaso Poggio
How the mind sees the world
心智如何看待世界
  • DOI:
    10.1038/s41562-020-00973-x
  • 发表时间:
    2020-10-12
  • 期刊:
  • 影响因子:
    15.900
  • 作者:
    Maximilian Riesenhuber
  • 通讯作者:
    Maximilian Riesenhuber

Maximilian Riesenhuber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maximilian Riesenhuber', 18)}}的其他基金

Architecture and plasticity of auditory lexical representations in the human brain
人脑听觉词汇表征的结构和可塑性
  • 批准号:
    1756313
  • 财政年份:
    2018
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Somatosensory Speech And Non-Speech Categories To Test The Brain's General Principles Of Perceptual Learning
合作研究:利用体感言语和非言语类别来测试大脑感知学习的一般原理
  • 批准号:
    1439338
  • 财政年份:
    2014
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Standard Grant
The neural bases of task proficiency and dual-tasking: Escaping the frontal bottleneck
任务熟练度和双重任务的神经基础:摆脱额叶瓶颈
  • 批准号:
    1232530
  • 财政年份:
    2012
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Standard Grant
Plasticity of Orthographic and Semantic Representations in the Human Brain
人脑中的拼写和语义表示的可塑性
  • 批准号:
    1026934
  • 财政年份:
    2010
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Continuing Grant
CAREER: Model-Based fMRI of Human Object Recognition
职业:基于模型的人体物体识别功能磁共振成像
  • 批准号:
    0449743
  • 财政年份:
    2005
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Continuing Grant

相似国自然基金

“Bottom-up”策略构筑金属纳米粒子-多孔有机聚合物复合催化材料
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
简便快速bottom-up法制备含氮空位中心的纳米金刚石晶体
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
手性有机多孔材料:“Bottom-Up”策略实现手性有机小分子催化剂的多相化
  • 批准号:
    21172103
  • 批准年份:
    2011
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Continuing Grant
The neural basis of top-down biasing of bottom-up visual processing
自下而上视觉处理的自上而下偏置的神经基础
  • 批准号:
    2241975
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Continuing Grant
Bottom-up analysis of radiation microscopic transport
辐射微观传输的自下而上分析
  • 批准号:
    23K04635
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modelling bottom-up and top-down linguistic knowledge across different contexts of bilingual development
在双语发展的不同背景下对自下而上和自上而下的语言知识进行建模
  • 批准号:
    ES/X008266/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Research Grant
Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
  • 批准号:
    10638114
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
  • 批准号:
    10748709
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
Bottom-up multiscale modelling of expansive soils in natural environments
自然环境中膨胀土的自下而上多尺度建模
  • 批准号:
    FT220100515
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
    ARC Future Fellowships
Bottom-up Approach for Improving Systems with weak power systems networks and gradual integration of off-grid community systems
自下而上的弱电力系统网络改进方法和离网社区系统的逐步整合
  • 批准号:
    2891694
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Studentship
Bottom-Up, Top-Down, and Local Interactions in the Generation and Consolidation of Cortical Representations of Sequential Experience
顺序经验的皮层表征的生成和巩固中的自下而上、自上而下和局部交互
  • 批准号:
    10658227
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
Development of a bottom-up explainable discriminator construction method and its application to social-infrastructure problems
自下而上的可解释判别器构建方法的开发及其在社会基础设施问题中的应用
  • 批准号:
    23K11248
  • 财政年份:
    2023
  • 资助金额:
    $ 58.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了