New Statistical Methods for Randomized Experiments in Political Science and Public Policy
政治学和公共政策随机实验的新统计方法
基本信息
- 批准号:0752050
- 负责人:
- 金额:$ 5.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Randomization of treatment assignment has been one of the most powerful tools for the development of modern science ever since the 1920s, and randomized experiments have been widely used to test hypotheses in the natural sciences. The fields of political science and public policy were long dominated by observational studies, but they now show growing use of experimental studies. The goal of the proposed research is to develop and evaluate new methods for the statistical analysis of randomized experiments. In the social sciences, experiments are often conducted outside of a laboratory to increase the generalizability of conclusions. However, this comes at the expense of having complete control over experimental participants' exposure to experimental treatments. Thus, statistical adjustments often must be made in order to ascertain valid causal effects. In the proposed research, new statistical methods will be developed and evaluated that address missing data problems in randomized experiments when the missing data mechanism depends on unobserved values of variables and implement efficient experimental designs when the unit of randomization is a cluster of individuals. The intellectual merit of the proposal lies in the wide applicability of the proposed methods within and beyond political science and public policy. The PI's ongoing strategy is to develop statistical methods in the context of specific experiments. Use of these motivating examples allows the PI to discover areas in which statistical analysis must be improved and new methods need to be developed. Five experiments will be analyzed; voting (survey) experiments in Germany and Japan, randomized evaluation of the Mexican universal health insurance program, a field experiment about deliberative decision-making in Africa, and a survey experiment about effects of racial priming on political attitudes. The PI has worked extensively on methodological research for causal inference with a particular emphasis on applications in political science, and the proposed research builds on the earlier work. The proposed methods as well as their substantive applications make original contributions. The broader impacts of this project are several. First, substantive progress will be made on the analyses of the aforementioned randomized experiments. New methods will be developed to better understand the effects of policy information and psychological manipulation on voting behavior; the health and financial effects of the Mexican universal health insurance program; the role of leaders in deliberative democracy; and the recent academic debate about racial priming. The proposed methods can also have applications beyond political science and public policy and into medical community recommendations for best practices in the conduct and analysis of cluster-randomized trials. The proposed research suggests the need to question the current standards for this research. Ultimately, improved methods will be made available to applied researchers with limited knowledge of statistical theory and computing.
自20世纪20年代以来,随机化治疗分配一直是现代科学发展最有力的工具之一,随机实验被广泛用于检验自然科学中的假设。政治学和公共政策领域长期以来以观察性研究为主,但它们现在越来越多地使用实验研究。本研究的目的是发展和评估随机实验统计分析的新方法。在社会科学中,实验经常在实验室之外进行,以增加结论的普遍性。然而,这是以完全控制实验参与者对实验治疗的暴露为代价的。因此,为了确定有效的因果关系,往往必须进行统计调整。在本研究中,将开发和评估新的统计方法,以解决随机实验中缺失数据的问题,当缺失数据的机制取决于变量的未观察值时,以及当随机化的单位是一群个体时,实现有效的实验设计。该建议的智力价值在于所提出的方法在政治学和公共政策内外的广泛适用性。PI目前的战略是在具体实验的背景下发展统计方法。使用这些鼓舞人心的例子,PI可以发现统计分析必须改进的领域和需要开发新方法的领域。将分析五个实验;德国和日本的投票(调查)实验,墨西哥全民健康保险计划的随机评估,非洲审议决策的实地实验,以及种族启动对政治态度影响的调查实验。PI在因果推理的方法论研究方面进行了广泛的工作,特别强调在政治学中的应用,而拟议的研究是建立在早期工作的基础上的。所提出的方法及其实际应用作出了原创性的贡献。这个项目有几个更广泛的影响。首先,上述随机实验的分析将取得实质性进展。将开发新的方法,以更好地了解政策信息和心理操纵对投票行为的影响;墨西哥全民健康保险方案的健康和财政影响;领导人在协商民主中的作用;最近关于种族启动的学术辩论。拟议的方法也可以应用于政治学和公共政策之外,并应用于医学界对进行和分析集群随机试验的最佳做法的建议。拟议的研究表明,有必要对这项研究的现行标准提出质疑。最终,改进的方法将提供给统计理论和计算知识有限的应用研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kosuke Imai其他文献
Health Changing health behaviors in the face of psychological biases and social influences
健康 面对心理偏见和社会影响改变健康行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
A. Malani;Cynthia Kinnan;Gabriella Conti;Kosuke Imai;Morgen Miller;Shailender Swaminathan;Alessandra Voena;Bartosz Woda - 通讯作者:
Bartosz Woda
権利濫用(2)-ウイルスバスター事件-
滥用权利(2)-病毒破坏事件-
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Horiuchi;Yusaku;Kosuke Imai;Naoko Taniguchi;谷口尚子;市島宗典;市島宗典;蘆立順美;蘆立順美;蘆立順美;蘆立順美 - 通讯作者:
蘆立順美
Boosting visible-light response for the complete decomposition of volatile organic compounds on the Cu-oxide deposited WO<sub>3</sub> photocatalyst by the synergistic effects of TiO<sub>2</sub>
- DOI:
10.1016/j.jece.2024.113610 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Kosuke Imai;Takashi Fukushima;Satoshi Heguri;Satoru Dohshi;Masanari Takahashi;Shinya Higashimoto - 通讯作者:
Shinya Higashimoto
Visible-light responsive TiOsub2/sub for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy
用于挥发性有机化合物(VOCs)完全光催化分解的可见光响应二氧化钛及其通过热能的有效加速
- DOI:
10.1016/j.apcatb.2024.123745 - 发表时间:
2024-06-05 - 期刊:
- 影响因子:21.100
- 作者:
Kosuke Imai;Takashi Fukushima;Hisayoshi Kobayashi;Shinya Higashimoto - 通讯作者:
Shinya Higashimoto
Novel compound heterozygous variants in the SLC39A7 gene in a Japanese girl with B-cell deficiency
患有 B 细胞缺陷的日本女孩 SLC39A7 基因中的新型复合杂合变异体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wakana Ohashi;Kay Tanita;Hinata Sugiyama;Tsubasa Okano;Tomiko Ozaki;Tetsu Nose;Yasunori Horiguchi;Zenichiro Kato;Hidenori Onishi;Kosuke Imai;Tomohiro Morio;Koji Hase;Hirokazu Kanegane - 通讯作者:
Hirokazu Kanegane
Kosuke Imai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kosuke Imai', 18)}}的其他基金
Collaborative Research: Understanding the Evolution of Political Campaign Advertisements over the Last Century
合作研究:了解上个世纪政治竞选广告的演变
- 批准号:
2148928 - 财政年份:2022
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Causal Inference with Spatio-Temporal Data on Human Dynamics in Conflict Settings
ATD:协作研究:利用时空数据对冲突环境下的人类动态进行因果推断
- 批准号:
2124463 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Evaluating the Impacts of Machine Learning Algorithms on Human Decisions
评估机器学习算法对人类决策的影响
- 批准号:
2051196 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Collaborative Conference Proposal: Support for Conferences and Mentoring of Women and Underrepresented Groups in Political Methodology
协作会议提案:在政治方法论方面支持妇女和代表性不足群体的会议和指导
- 批准号:
1922190 - 财政年份:2018
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: How Refugees Can Shape National Boundaries.
博士论文研究:难民如何塑造国家边界。
- 批准号:
1560636 - 财政年份:2016
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Collaborative Conference Proposal: Support for Conferences and Mentoring of Women and Underrepresented Groups in Political Methodology
协作会议提案:在政治方法论方面支持妇女和代表性不足群体的会议和指导
- 批准号:
1628102 - 财政年份:2016
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in Political Science: Open Trade for Sale: Lobbying by Productive Exporting Firms
政治学博士论文研究:开放贸易出售:生产性出口公司的游说
- 批准号:
1264090 - 财政年份:2013
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The Politics of Location in Resource Rent Distribution and the Projection of Power in Africa
博士论文研究:资源租金分配的区位政治和非洲的权力投射
- 批准号:
1226228 - 财政年份:2012
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Statistical Analysis of Causal Mechanisms: Identification, Inference, and Sensitivity Analysis
因果机制的统计分析:识别、推断和敏感性分析
- 批准号:
0918968 - 财政年份:2009
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Collaborative Research: The Measurement and Identification of Media Priming Effects in Political Science.
合作研究:政治学中媒体启动效应的测量和识别。
- 批准号:
0849715 - 财政年份:2009
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
- 批准号:
10797410 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
Developing New Statistical Methods for Vector-Borne Disease Surveillance to Improve Accuracy while Reducing Cost
开发新的媒介传播疾病监测统计方法,以提高准确性并降低成本
- 批准号:
10774013 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
New Statistical Methods for Computer-Assisted Inversion with Applications to Satellite Remote Sensing
计算机辅助反演统计新方法及其在卫星遥感中的应用
- 批准号:
2210664 - 财政年份:2022
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
- 批准号:
10631139 - 财政年份:2022
- 资助金额:
$ 5.26万 - 项目类别:
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
- 批准号:
10453875 - 财政年份:2022
- 资助金额:
$ 5.26万 - 项目类别:
Collaborative Research: New Statistical Methods for Microbiome Data Analysis
合作研究:微生物组数据分析的新统计方法
- 批准号:
2113359 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
New Statistical Methods for Modelling Cancer Outcomes
癌症结果建模的新统计方法
- 批准号:
10542801 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
New Statistical Methods for Cox Regression with Measurement Errors in Cancer and Nutritional Epidemiology
癌症和营养流行病学中具有测量误差的 Cox 回归的新统计方法
- 批准号:
10202076 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
New Statistical Methods for Cox Regression with Measurement Errors in Cancer and Nutritional Epidemiology
癌症和营养流行病学中具有测量误差的 Cox 回归的新统计方法
- 批准号:
10409754 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Collaborative Research: New Statistical Methods for Microbiome Data Analysis
合作研究:微生物组数据分析的新统计方法
- 批准号:
2113360 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant