Evaluating the Impacts of Machine Learning Algorithms on Human Decisions
评估机器学习算法对人类决策的影响
基本信息
- 批准号:2051196
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will develop a methodological framework and set of tools for experimentally evaluating the impacts of machine learning algorithms on human decisions. In today's data-driven society, decisions often are based at least in part on algorithmic recommendations. Whenever choosing movies to watch or shopping for clothes to wear, online sites are constantly feeding consumers with such information. The project will develop methodologies to evaluate whether algorithmic recommendations help human decision makers achieve their goals and how they affect the fairness of such decisions. The new methodologies will help researchers empirically evaluate the efficacy of algorithm-assisted human decision making in a wide range of settings. These settings include individual decisions such as online shopping as well as decisions in medicine, finance, and judicial systems that have the potential to affect the lives of many in society. The investigators will apply the new methods to a randomized evaluation of pretrial risk assessment instruments on judicial decisions. An open-source software package will be developed, and the databases used in this research will be made publicly available.This project will develop tools for experimentally evaluating whether algorithmic recommendations help human decision makers achieve their goals and how such recommendations affect the fairness of such decisions. On the methodological front, the project will show how to evaluate the impacts of machine learning algorithms on the accuracy and fairness of human decisions. Although there exists a growing literature on algorithmic fairness, existing research almost exclusively focuses on the evaluation of accuracy and fairness of the algorithms themselves. Machines and humans have their own biases, however, and these biases may interact in unexpected ways to influence ultimate decisions. Also, the existing definitions of fairness do not account for the fact that decisions may influence individuals. The methodological framework to be developed will address these open problems. On the substantive front, the project will analyze data on original, real-world randomized controlled trials (RCTs) in collaboration with several jurisdictions in the United States. The project will analyze these RCTs to evaluate the impacts of pretrial risk assessment instruments (PRAIs) on judicial decisions. There has been a growing concern in the academic and public-policy communities about the potential racial bias of these PRAIs. This research will develop and implement rigorous evaluation methodologies to answer policy-relevant questions so that direct contributions can be made to this important public policy debate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发一个方法框架和一套工具,用于实验评估机器学习算法对人类决策的影响。在当今数据驱动的社会中,决策通常至少部分基于算法建议。每当选择看电影或购物的衣服穿,在线网站不断提供这些信息的消费者。该项目将开发方法来评估算法建议是否有助于人类决策者实现他们的目标,以及它们如何影响这些决策的公平性。新方法将帮助研究人员在广泛的环境中实证评估算法辅助人类决策的有效性。这些环境包括个人的决定,如网上购物以及医疗,金融和司法系统的决定,这些决定有可能影响社会中许多人的生活。研究人员将应用新方法对司法判决的审前风险评估工具进行随机评估。该项目将开发一个开源软件包,并将公开本研究中使用的数据库。该项目将开发工具,以实验方式评估算法建议是否有助于人类决策者实现其目标,以及这些建议如何影响此类决策的公平性。在方法论方面,该项目将展示如何评估机器学习算法对人类决策的准确性和公平性的影响。虽然有越来越多的文献算法的公平性,现有的研究几乎完全集中在算法本身的准确性和公平性的评价。然而,机器和人类都有自己的偏见,这些偏见可能会以意想不到的方式相互作用,影响最终的决策。此外,现有的公平定义没有考虑到决策可能影响个人的事实。有待制定的方法框架将解决这些未决问题。在实质性方面,该项目将与美国的几个司法管辖区合作,分析原始的真实世界随机对照试验(RCT)的数据。该项目将分析这些随机对照试验,以评估审前风险评估工具(PRAIs)对司法判决的影响。学术界和公共政策界越来越担心这些PRAIs的潜在种族偏见。这项研究将开发和实施严格的评估方法,以回答政策相关的问题,使直接贡献,可以作出这一重要的公共政策辩论。这一奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的知识价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kosuke Imai其他文献
Health Changing health behaviors in the face of psychological biases and social influences
健康 面对心理偏见和社会影响改变健康行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
A. Malani;Cynthia Kinnan;Gabriella Conti;Kosuke Imai;Morgen Miller;Shailender Swaminathan;Alessandra Voena;Bartosz Woda - 通讯作者:
Bartosz Woda
権利濫用(2)-ウイルスバスター事件-
滥用权利(2)-病毒破坏事件-
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Horiuchi;Yusaku;Kosuke Imai;Naoko Taniguchi;谷口尚子;市島宗典;市島宗典;蘆立順美;蘆立順美;蘆立順美;蘆立順美 - 通讯作者:
蘆立順美
Boosting visible-light response for the complete decomposition of volatile organic compounds on the Cu-oxide deposited WO<sub>3</sub> photocatalyst by the synergistic effects of TiO<sub>2</sub>
- DOI:
10.1016/j.jece.2024.113610 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Kosuke Imai;Takashi Fukushima;Satoshi Heguri;Satoru Dohshi;Masanari Takahashi;Shinya Higashimoto - 通讯作者:
Shinya Higashimoto
Visible-light responsive TiOsub2/sub for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy
用于挥发性有机化合物(VOCs)完全光催化分解的可见光响应二氧化钛及其通过热能的有效加速
- DOI:
10.1016/j.apcatb.2024.123745 - 发表时间:
2024-06-05 - 期刊:
- 影响因子:21.100
- 作者:
Kosuke Imai;Takashi Fukushima;Hisayoshi Kobayashi;Shinya Higashimoto - 通讯作者:
Shinya Higashimoto
Novel compound heterozygous variants in the SLC39A7 gene in a Japanese girl with B-cell deficiency
患有 B 细胞缺陷的日本女孩 SLC39A7 基因中的新型复合杂合变异体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wakana Ohashi;Kay Tanita;Hinata Sugiyama;Tsubasa Okano;Tomiko Ozaki;Tetsu Nose;Yasunori Horiguchi;Zenichiro Kato;Hidenori Onishi;Kosuke Imai;Tomohiro Morio;Koji Hase;Hirokazu Kanegane - 通讯作者:
Hirokazu Kanegane
Kosuke Imai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kosuke Imai', 18)}}的其他基金
Collaborative Research: Understanding the Evolution of Political Campaign Advertisements over the Last Century
合作研究:了解上个世纪政治竞选广告的演变
- 批准号:
2148928 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Causal Inference with Spatio-Temporal Data on Human Dynamics in Conflict Settings
ATD:协作研究:利用时空数据对冲突环境下的人类动态进行因果推断
- 批准号:
2124463 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Conference Proposal: Support for Conferences and Mentoring of Women and Underrepresented Groups in Political Methodology
协作会议提案:在政治方法论方面支持妇女和代表性不足群体的会议和指导
- 批准号:
1922190 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: How Refugees Can Shape National Boundaries.
博士论文研究:难民如何塑造国家边界。
- 批准号:
1560636 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Conference Proposal: Support for Conferences and Mentoring of Women and Underrepresented Groups in Political Methodology
协作会议提案:在政治方法论方面支持妇女和代表性不足群体的会议和指导
- 批准号:
1628102 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in Political Science: Open Trade for Sale: Lobbying by Productive Exporting Firms
政治学博士论文研究:开放贸易出售:生产性出口公司的游说
- 批准号:
1264090 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The Politics of Location in Resource Rent Distribution and the Projection of Power in Africa
博士论文研究:资源租金分配的区位政治和非洲的权力投射
- 批准号:
1226228 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Statistical Analysis of Causal Mechanisms: Identification, Inference, and Sensitivity Analysis
因果机制的统计分析:识别、推断和敏感性分析
- 批准号:
0918968 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: The Measurement and Identification of Media Priming Effects in Political Science.
合作研究:政治学中媒体启动效应的测量和识别。
- 批准号:
0849715 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
New Statistical Methods for Randomized Experiments in Political Science and Public Policy
政治学和公共政策随机实验的新统计方法
- 批准号:
0752050 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
IMPACTS站点土壤铝活化机制研究
- 批准号:40273045
- 批准年份:2002
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Machine learning to find new extraction solvents that has both excellent performance for separation and recovery of rare metals and low environmental impacts
机器学习寻找新的萃取溶剂,该溶剂既具有优异的稀有金属分离和回收性能,又对环境影响低
- 批准号:
23H01756 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The application of satellite remote sensing and machine learning for modelling impacts of regenerative farming practices
卫星遥感和机器学习在再生农业实践影响建模中的应用
- 批准号:
2842273 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Studentship
The application of satellite remote sensing and machine learning for modelling impacts of regenerative farming practices
卫星遥感和机器学习在再生农业实践影响建模中的应用
- 批准号:
BB/X511614/1 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Training Grant
A machine learning framework for understanding impacts on the HIV latent reservoir size, including drugs of abuse
机器学习框架,用于了解对艾滋病毒潜伏病毒库大小的影响,包括滥用药物
- 批准号:
10347983 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
CSEDI: Searching For Hadean Impacts: Clues From the Sudbury Impact Basin and Machine Learning Approaches
CSEDI:寻找冥古宙撞击:来自萨德伯里撞击盆地的线索和机器学习方法
- 批准号:
2102143 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
A machine learning framework for understanding impacts on the HIV latent reservoir size, including drugs of abuse
机器学习框架,用于了解对艾滋病毒潜伏病毒库大小的影响,包括滥用药物
- 批准号:
10653233 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Improved Assessment of wind turbine operation loading and load-impacts through the integration of machine learning with physics based models
通过将机器学习与基于物理的模型相结合,改进对风力涡轮机运行负载和负载影响的评估
- 批准号:
2729220 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Studentship
Lifecycle-Long Environmental Impacts of Supplementary Cementitious Materials (SCMs) in Sustainable Land Regeneration: A Machine-Learning Based Approac
可持续土地再生中补充胶凝材料 (SCM) 的全生命周期环境影响:基于机器学习的方法
- 批准号:
2606439 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Studentship
Elucidation of impacts of climate changes on spatio-temporal distributions of marine animals using machine learning approaches
利用机器学习方法阐明气候变化对海洋动物时空分布的影响
- 批准号:
19K06216 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synergistic integration of topology and machine learning for the predictions of protein-ligand binding affinities and mutation impacts
拓扑和机器学习的协同集成,用于预测蛋白质-配体结合亲和力和突变影响
- 批准号:
10189006 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:














{{item.name}}会员




