GOALI - New Nanostructured Polyurethane/POSS Hybrid Films With Enhanced Benefits: From Reactive Aqueous Dispersions to Prescribed Film Morphologies and Properties

GOALI - 具有增强优势的新型纳米结构聚氨酯​​/POSS 混合薄膜:从反应性水分散体到规定的薄膜形态和性能

基本信息

  • 批准号:
    0752150
  • 负责人:
  • 金额:
    $ 36.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

CBET-0752150, OtaigbeIntellectual Merit: This university (Southern Mississippi) and industry (Hybrid Plastics Inc.) cooperative research proposal will investigate the effects of incorporating into waterborne polyurethanes (PU) functional nanoscale fillers (such as reactive polyhedral oligomeric silsesquioxanes (POSS) consisting of an eight-corner, -(SiO1.5)n-based cage bearing one or more functional groups) to yield new hybrid PU/POSS films with potential solid-state properties such as enhanced bioactivity & non-thrombogenicity, thermal stability, flame resistance, excellent environmental durability in atomic oxygen, and improvement in mechanical properties. The ultimate goal of the project is to develop new knowledge on how variations in the hybrid PU/POSS composition, temperature and flow conditions can be used to tune the self-assembled morphologies of the final products (such as stents, thin films, and high-performance protective coatings) to prescribed macromolecular structure and properties; and invent new applications. In addition, the research will investigate the molecular origin of the structure, rheological properties and thermomechanical behavior of well-characterized hybrid PU/POSS polymers. Such studies on solvent-cast PU/POSS thin films as functions of different composition, chain extension/configuration, and particle size will enable one to shed light on how controlled changes in the strength and range of particle interactions alter the phase behavior, morphology and rheology of the hybrid PU/POSS system, and consequently on the mechanical, thermal and dynamical behavior of the solid PU/POSS hybrid films. The results obtained from these studies will provide a quantitative basis for testing existing theories on self-assembly of polymer morphologies and fractal gels reported in the literature on relatively simpler polymer systems in the microscopic length scales, and may reduce or eliminate costly "trial and error" practices common in the literature and industry, allowing a route to rational design of synthesis and processing conditions at the nanometer length scale for this class of materials. In addition, the project is expected to discover novel phenomena that will provide new scientific challenges for theorists and computational materials scientists, making an important contribution to chemical engineering, materials science & engineering, and rheology. Further, the insights obtained from the advanced NMR and from other characterization methods will form a fundamental basis for the improved design of nanostructured materials with enhanced benefits and for controlling the phase structure dynamics of the materials in a feedback mechanism that will account for the materials improvements as a function of the reactive processing conditions. The targeted PU/POSS hybrids (which are different from conventional polymers, polymer nanocomposites and microcomposites) would be useful because many of the intrinsic properties of the PU and POSS are complementary, and they hold great promise for future high-end uses such as in biomedical devices, especially at cardiovascular interfaces, where other polymers are not useable. The academic liaison with industry will provide critical guidance and clear focus on relevance of the project. Broader impacts: The results of this work will play an important role in the Nation?s current interest in developing micro- and nano length scale material and processing technologies. The materials are expected to possess desirable morphologies by self-assembly as well as many desirable properties such as good chemical resistance, water resistance, solvent resistance, toughness, abrasion resistance, durability, favorable melt/solution rheology, and good thromboresistant properties, making them widely applicable. The project will provide training for 1 PhD student, as well as provide research opportunities for undergraduate students. In addition, the research may lead to development of advanced characterization methods that can serve as broad-based tools for fundamental analysis of polymeric films and dispersions. By combining university and industrial efforts, this proposal will avoid the disappointing progress seen in prior attempts to follow one approach while neglecting others. The University of Southern Mississippi has a sizable minority student population who could benefit from training in the broad area of polymer reaction engineering.
CBET-0752150, OtaigbeIntellectual Merit: This university (Southern Mississippi) and industry (Hybrid Plastics Inc.) cooperative research proposal will investigate the effects of incorporating into waterborne polyurethanes (PU) functional nanoscale fillers (such as reactive polyhedral oligomeric silsesquioxanes (POSS) consisting of an eight-corner, - (SIO1.5)基于N的基于一个或多个官能团的基于N的笼子),以产生具有潜在固态特性的新混合PU/POSS膜,例如增强的生物活性和非紧密性,热稳定性,耐热性,耐火性,在原子氧中的出色环境耐用性以及机械特性的提高。该项目的最终目的是发展有关混合PU/PUS的组成,温度和流量条件的变化如何使用最终产品(例如支架,薄膜和高性能保护涂层)的自组装形态来调整处方的大分子结构和特性的新知识;并发明新的应用程序。此外,该研究将研究特征良好的混合PU/POSS聚合物的结构,流变特性和热力学行为的分子起源。关于溶剂粉薄膜作为不同组成,链条扩展/配置和粒径的功能的这样的研究将使人们能够阐明粒子相互作用的强度和范围的控制变化改变了混合PU/PUST系统的相位行为,形态和流变系统,并在机械,热和动态PUP/POUST PUCE/POUST PUPARCY HYBR IFMERS上的杂交PU/PUSH系统如何改变。 The results obtained from these studies will provide a quantitative basis for testing existing theories on self-assembly of polymer morphologies and fractal gels reported in the literature on relatively simpler polymer systems in the microscopic length scales, and may reduce or eliminate costly "trial and error" practices common in the literature and industry, allowing a route to rational design of synthesis and processing conditions at the nanometer length scale for this class of materials.此外,该项目有望发现新的现象,该现象将为理论家和计算材料科学家提供新的科学挑战,从而为化学工程,材料科学与工程以及流变学做出重要贡献。此外,从先进的NMR和其他表征方法获得的见解将构成具有增强益处的纳米结构材料设计的基础基础,并控制反馈机制中材料的相结构动态,这将解释材料的改进,以改善材料作为反应性处理条件的函数。有针对性的PU/POSS杂种(与常规聚合物,聚合物纳米复合材料和微型复合材料不同)是有用的,因为PU和POSS的许多固有特性都是互补的,并且它们对未来的高端用途(例如在生物医师设备中,尤其是在心血管界面上,在其他情况下都不可用的高端用途)都有很大的希望。与行业的学术联络人将提供关键的指导,并明确关注该项目的相关性。更广泛的影响:这项工作的结果将在国家目前在开发微观和纳米长度规模材料和加工技术方面发挥重要作用。预计这些材料将通过自组装以及许多理想的特性具有理想的形态,例如良好的耐化学性,耐水性,抗溶剂耐药性,韧性,耐磨性,耐磨性,耐久性/溶液流性性和良好的动植物特性,使其广泛适用。该项目将为1位博士生提供培训,并为本科生提供研究机会。此外,该研究可能会导致高级表征方法的发展,这些方法可以用作基于聚合膜和分散基础分析的广泛工具。通过将大学和工业努力结合起来,该提案将避免在忽略其他方法的同时尝试采用一种方法时看到的令人失望的进展。密西西比州南部大学的少数族裔学生人数可以从聚合物反应工程广泛领域的培训中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Otaigbe其他文献

Joshua Otaigbe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Otaigbe', 18)}}的其他基金

I-Corps: Toward commercializing cellulose fiber-reinforced polymer composites
I-Corps:迈向纤维素纤维增强聚合物复合材料的商业化
  • 批准号:
    1644677
  • 财政年份:
    2016
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Catalyzing new international research collaboration in molecular polymer composites reinforced with in situ low-Tg phosphate glass fibers
促进原位低 Tg 磷酸盐玻璃纤维增​​强分子聚合物复合材料的新国际研究合作
  • 批准号:
    1346898
  • 财政年份:
    2014
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
GOALI: Development of Inorganic Phosphate Glass Matrix Nanocomposites Incorporating Nanoscale Polyhedral Oligomeric Silsesquioxanes with Improved Properties
目标:开发包含纳米级多面体低聚倍半硅氧烷的无机磷酸盐玻璃基纳米复合材料,并具有改进的性能
  • 批准号:
    1360006
  • 财政年份:
    2014
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Wood Fiber Reinforced Polymers using Ring-Opening Polymers for Structural Applications
合作研究:使用开环聚合物的木纤维增强聚合物用于结构应用
  • 批准号:
    1161292
  • 财政年份:
    2012
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular Structure and Phase Separation Behavior of Novel Phosphate-glass / Polymer Hybrids Studied by Advanced Solid-state NMR and Rheometry Methods
合作研究:通过先进的固态核磁共振和流变测量方法研究新型磷酸盐玻璃/聚合物杂化物的分子结构和相分离行为
  • 批准号:
    0652350
  • 财政年份:
    2008
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
U.S.-Switzerland Cooperative Research and Education: Rheology, Morphology and Modeling of New Inorganic-Organic Hybrid Materials
美国-瑞士合作研究和教育:新型无机-有机杂化材料的流变学、形态学和建模
  • 批准号:
    0436384
  • 财政年份:
    2005
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
Novel Approaches to Nanostructured Polymer Blends With Enhanced Benefits
具有增强优势的纳米结构聚合物共混物的新方法
  • 批准号:
    0317646
  • 财政年份:
    2003
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
GOALI: Generation, Characterization, and Modeling of Structure and Properties of Polymer Blend Nano- and Microparticles
目标:聚合物共混纳米粒子和微粒子的结构和性能的生成、表征和建模
  • 批准号:
    0242754
  • 财政年份:
    2002
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
CAREER: Medium-Range Order in Polymeric Phosphate Glasses: Effects of Atomic-Scale Structures on Macroscopic Properties
职业:聚合磷酸盐玻璃中的中程有序:原子尺度结构对宏观性能的影响
  • 批准号:
    0309115
  • 财政年份:
    2002
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
SGER: Feasibility of Reactive Extrusion of Nanostructured Polymer Blends
SGER:纳米结构聚合物共混物反应挤出的可行性
  • 批准号:
    0122925
  • 财政年份:
    2001
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant

相似国自然基金

超宽带隙氮化硼纳米带新结构的深紫外探测性能研究
  • 批准号:
    62074046
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
有机手性纳米结构中的自旋新现象及其机理研究
  • 批准号:
    11974212
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
共装载新结构EGFR和VEGF抑制剂NP@MOF纳米载体的构建及生物学性能研究
  • 批准号:
    51872205
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
面向糖蛋白质组学的有机共价骨架富集新介质与方法
  • 批准号:
    21804041
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
基于新理论模型的巯基配体保护金纳米团簇的结构设计与性质分析
  • 批准号:
    21763024
  • 批准年份:
    2017
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

New antifrosting strategies based on spatial control of nucleation combined with nanostructured anticondensation surfaces.
基于成核空间控制与纳米结构防凝结表面相结合的新防霜策略。
  • 批准号:
    22K14599
  • 财政年份:
    2022
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RUI:CAS: Metal Phosphides on Nanostructured Indium Oxide - New Photocatalysts for CO2 Hydrogenation
RUI:CAS:纳米结构氧化铟上的金属磷化物——用于二氧化碳加氢的新型光催化剂
  • 批准号:
    2101259
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Continuing Grant
Synthesis of New Intergrowth and Nanostructured Metal Oxyhalide Photocatalysts
新型共生纳米结构金属卤氧化物光催化剂的合成
  • 批准号:
    2113536
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Standard Grant
New Quaternary MAX Phase Thin Films: Understanding the Thermally Induced Microstructural Evolutions and Reaction Mechanisms in Nanostructured Multilayers via Experimental Combinatorial Study
新型四元 MAX 相薄膜:通过实验组合研究了解纳米结构多层膜中的热致微观结构演化和反应机制
  • 批准号:
    464878149
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Research Grants
Engineering New Nanostructured Materials for Tunable Light-Matter Interactions
工程新型纳米结构材料可调节光-物质相互作用
  • 批准号:
    RGPIN-2017-06405
  • 财政年份:
    2021
  • 资助金额:
    $ 36.77万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了