New Quaternary MAX Phase Thin Films: Understanding the Thermally Induced Microstructural Evolutions and Reaction Mechanisms in Nanostructured Multilayers via Experimental Combinatorial Study

新型四元 MAX 相薄膜:通过实验组合研究了解纳米结构多层膜中的热致微观结构演化和反应机制

基本信息

项目摘要

MAX phase materials (Mn+1AXn, M = transition metal, A = A group element, X = carbon or nitrogen, n =1, 2, 3) are atomically layered compounds that possess unique properties combining attributes of both metals and ceramics. Multi-elemental alloying of individual atomic layers is a powerful tool to synthesize novel quaternary MAX phases and offers manifold opportunities to widely tune their properties through tailoring their local chemistry and structural complexity. Recently, apart from random solid solution structures, new chemically ordered quaternary (M′M″)n+1AXn structures on M layers have been discovered, including out-of-plane ordering (referred to as o-MAX) and in-plane ordering (referred to as i-MAX). However, the synthesis of such bulk quaternary MAX phases in single-phase structure remains a great challenge. Thin-film synthesis of quaternary MAX phase materials is an emerging research field in materials science, and, chemically ordered quaternary MAX phase thin films have not been reported yet. In this proposal, we aim to synthesize single-phase and, potentially, basal-plane textured quaternary (M′M″)n+1AXn thin film materials in three quaternary model systems (Cr-M″-Al-C with M″: V, Ti, Zr). This will be achieved by transformation of nanoscale elemental multilayers with pre-defined nanostructured architectures (“thin film precursors”) through appropriate treatment processes, utilizing an experimental combinatorial approach for the thin film precursor design and synthesis. The research work will target at first the synthesis of quaternary random solid solution MAX phases, and will then address the synthesis of the two complex ordered structures. The scientific objectives of this proposal are: 1) to understand the microstructural evolutions and their underlying reaction mechanisms during thermal processing of the nanostructured multilayers towards the formation of different quaternary MAX phase thin films, and, 2) to explore the composition–microstructure–properties relationship of the quaternary MAX phase thin films. The thermal processing of the thin film precursors will cover annealing experiments at various heating rates and kinetics (i.e. very low as well as fast heating rates), including selected experiments with a novel thin film calorimeter. The scientific work will be based on intensive thin film characterization methods with atomic-scale resolution. Thus, the proposed research will contribute to developing suitable thin film precursor architectures and thermal treatment processes for the synthesis of phase-pure quaternary MAX phase thin films. The scientific outcome will lead to an understanding of the role of local chemistry (composition and chemical ordering) and microstructure on the properties of such new MAX phase thin film materials.
MAX 相材料(Mn+1AXn,M = 过渡金属,A = A 族元素,X = 碳或氮,n =1,2,3)是原子层状化合物,具有结合金属和陶瓷属性的独特性能。单个原子层的多元素合金化是合成新型四元 MAX 相的强大工具,并提供了多种机会通过定制其局部化学和结构复杂性来广泛调整其性能。近年来,除了随机固溶体结构外,还发现了M层上新的化学有序四元(M′M″)n+1AXn结构,包括面外有序(简称o-MAX)和面内有序(简称i-MAX)。然而,在单相结构中合成这种大块四元 MAX 相仍然是一个巨大的挑战。四元MAX相材料的薄膜合成是材料科学中的一个新兴研究领域,目前化学有序四元MAX相薄膜尚未见报道。在本提案中,我们的目标是在三个四元模型系统(Cr-M”-Al-C 和 M”:V、Ti、Zr)中合成单相和潜在的基面织构四元 (M′M″)n+1AXn 薄膜材料。 这将通过适当的处理工艺,利用薄膜前体设计和合成的实验组合方法,对具有预先定义的纳米结构结构(“薄膜前体”)的纳米级元素多层进行转化来实现。研究工作首先针对四元随机固溶体MAX相的合成,然后将解决两种复杂有序结构的合成。该提案的科学目标是:1)了解纳米结构多层膜在形成不同四元 MAX 相薄膜的热处理过程中的微观结构演变及其潜在反应机制,2)探索四元 MAX 相薄膜的成分-微观结构-性能关系。薄膜前驱体的热处理将涵盖各种加热速率和动力学(即非常低和快速的加热速率)下的退火实验,包括使用新型薄膜量热计进行的选定实验。这项科学工作将基于具有原子级分辨率的密集薄膜表征方法。因此,所提出的研究将有助于开发合适的薄膜前驱体结构和热处理工艺,用于合成纯相四元 MAX 相薄膜。科学成果将有助于了解局部化学(成分和化学排序)和微观结构对此类新型 MAX 相薄膜材料性能的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Chongchong Tang, Ph.D.其他文献

Dr.-Ing. Chongchong Tang, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Quaternary paleontology of Jamaica: Colonization, extinction, and resilience in a biodiversity hotspot
职业:牙买加第四纪古生物学:生物多样性热点地区的殖民、灭绝和复原力
  • 批准号:
    2340910
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Temporal changes of Quaternary crustal uplift rates of Japanese islands revealed by terrestrial in-situ cosmogenic nuclide daying
陆地原位宇宙成因核素日测揭示日本列岛第四纪地壳隆升速率的时间变化
  • 批准号:
    23H00723
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Travel: Supporting Students and Early Career Scientists in Quaternary Research: the 2023 USNC/INQUA Congress Travel Fellowship Program
旅行:支持第四纪研究中的学生和早期职业科学家:2023 年 USNC/INQUA 国会旅行奖学金计划
  • 批准号:
    2316129
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of geochronological techniques to assess the danger of Quaternary volcanic eruptions
开发地质年代学技术来评估第四纪火山喷发的危险
  • 批准号:
    22KF0152
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Hetero-bipolar transistors with quaternary mixed AlGaInN polarized doping layers
具有四元混合 AlGaInN 极化掺杂层的异质双极晶体管
  • 批准号:
    23H01866
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of sea-level changes around the Kii Peninsula during the late Quaternary based on integrated analysis of microfossils
基于微化石综合分析揭示纪伊半岛周边第四纪晚期海平面变化
  • 批准号:
    23K03564
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New insights on the forcing of Quaternary ice-age terminations
关于第四纪冰河时代终止的新见解
  • 批准号:
    DP220102133
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Research on enantioselective parallel total syntheses of antitumor polycyclic natural products with all-carbon quaternary stereogenic centers at multiple fused rings
多稠环全碳季立体中心的抗肿瘤多环天然产物的对映选择性平行全合成研究
  • 批准号:
    22H02087
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Self-regulation of Lipases by Changes to Quaternary Structure
通过四级结构的变化进行脂肪酶的自我调节
  • 批准号:
    10429286
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Global ocean circulation during the late Quaternary: Paleoceanographic constraints from the Western Equatorial Pacific
晚第四纪全球海洋环流:来自西赤道太平洋的古海洋学限制
  • 批准号:
    RGPIN-2022-03064
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了