Conference on Algebraic Cycles: II Progress and Prospects, Spring 2008
代数环会议:II 进展与展望,2008 年春季
基本信息
- 批准号:0754330
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractPrincipal Investigator: Joshua, RoyProposal Number: DMS - 0754330 Institution: The Ohio State University Title: Conference on Algebraic Cycles II: Progress and ProspectsOrganizers: Reza Akhtar (Miami University), Patrick Brosnan (University of British Columbia) and Roy Joshua (The Ohio State University).This conference will bring together many of the world?s leading mathematicians to survey current developments, report on recent progress, and anticipate future developments in the field of algebraic cycles. The conference will also explore connections with arithmetic geometry and mathematical physics/non-commutative geometry. Progress in algebraic cycles, with related results in algebraic K-theory, has been dramatic in recent years. The principal contributors to motivic cohomology which underlies this progress, Bloch, Lichtenbaum, Levine, Nori and Friedlander have agreed to participate. Related investigations include the work of Totaro, Weibel and Esnault all of whom have agreed to participate. Developments in arithmetic geometry closely related to algebraic cycles involve the work of Colliot-Thelene and Huber who will also participate in this conference. The connections between algebraic cycles and mathematical physics/non-commutative geometry have begun to be explored in recent years. Some of the main players in this emerging field are Bloch, Esnault and Kreimer: in addition to Bloch and Esnault, Kreimer also will participate in this conference. The venue of this conference is The Ohio State University, Columbus, Ohio, from Monday, March 24 through Saturday, March 29, 2008. The conference plans to support participation by a number of young people, at both the post-doctoral and advanced graduate student level, so that it will serve to stimulate increased interest and participation in these exciting mathematical topics.
摘要主要研究者:Joshua, roye提案号:DMS - 0754330机构:俄亥俄州立大学标题:代数循环会议II:进展与展望组织者:Reza Akhtar(迈阿密大学),Patrick Brosnan(不列颠哥伦比亚大学)和Roy Joshua(俄亥俄州立大学)。这次会议将把世界上许多人聚集在一起。主要数学家调查当前的发展,报告最近的进展,并预测代数循环领域的未来发展。会议还将探讨算术几何和数学物理/非交换几何之间的联系。近年来,代数循环的研究取得了巨大的进展,代数k理论也取得了相关的成果。动机上同论的主要贡献者布洛赫、利希滕鲍姆、莱文、诺里和弗里德兰德同意参与这项研究。相关调查包括Totaro, Weibel和Esnault的工作,他们都同意参与。与代数循环密切相关的算术几何的发展涉及到Colliot-Thelene和Huber的工作,他们也将参加这次会议。代数循环与数学物理/非交换几何之间的联系近年来开始被探索。这个新兴领域的一些主要参与者是Bloch, Esnault和Kreimer:除了Bloch和Esnault之外,Kreimer也将参加这次会议。本次会议的地点是俄亥俄州哥伦布市的俄亥俄州立大学,时间为2008年3月24日星期一至3月29日星期六。会议计划支持一些年轻人的参与,包括博士后和高级研究生水平,因此它将有助于激发人们对这些令人兴奋的数学主题的兴趣和参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roy Joshua其他文献
The trace formula for equivariant $$\mathfrak{D}$$ -modules and perverse sheavesand perverse sheaves
- DOI:
10.1007/bf02571344 - 发表时间:
1991-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Roy Joshua - 通讯作者:
Roy Joshua
Higher Grassmann codes II
高格拉斯曼码 II
- DOI:
10.1016/j.ffa.2023.102211 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:1.200
- 作者:
Mahir Bilen Can;Roy Joshua;G.V. Ravindra - 通讯作者:
G.V. Ravindra
Equivariant Algebraic K-Theory and Derived completions III: Applications
等变代数 K 理论和导出完成 III:应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gunnar Carlsson;Roy Joshua;Pablo Pelaez - 通讯作者:
Pablo Pelaez
Equivariant perverse sheaves and quasi-hereditary algebras
- DOI:
10.1016/j.jalgebra.2021.10.027 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:
- 作者:
Roy Joshua - 通讯作者:
Roy Joshua
Equivariant Algebraic K-Theory and Derived completions II: the case of Equivariant Homotopy K-Theory and Equivariant K-Theory
等变代数 K 理论和导出补全 II:等变同伦 K 理论和等变 K 理论的案例
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gunnar Carlsson;Roy Joshua;Pablo Pelaez - 通讯作者:
Pablo Pelaez
Roy Joshua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roy Joshua', 18)}}的其他基金
Support of US Participants in the Research Program: K-Theory, Algebraic Cycles and Motivic Homotopy Theory, Cambridge, UK.
美国参与者对研究项目的支持:K 理论、代数环和动机同伦理论,英国剑桥。
- 批准号:
1949369 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop and Conference: K-theory: Future Directions
研讨会和会议:K 理论:未来方向
- 批准号:
1519043 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Applications of the motivic Becker-Gottlieb transfer
动机 Becker-Gottlieb 传递的应用
- 批准号:
1200284 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Algebraic Cycles, K-Theory and Modular Representation Theory: Progress and Prospects; September 16-19, 2004
会议:代数环、K理论和模表示论:进展与展望;
- 批准号:
0354924 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Asymptotic Hodge Theory, Fibered Motives, and Algebraic Cycles
渐近霍奇理论、纤维动机和代数圈
- 批准号:
2101482 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Automorphic Forms, Arthur Packets, and Algebraic Cycles
自守形式、亚瑟包和代数圈
- 批准号:
2001293 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Support of US Participants in the Research Program: K-Theory, Algebraic Cycles and Motivic Homotopy Theory, Cambridge, UK.
美国参与者对研究项目的支持:K 理论、代数环和动机同伦理论,英国剑桥。
- 批准号:
1949369 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant