Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
基本信息
- 批准号:2401548
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This awards concern research in Number Theory. Solving polynomial equations in rational numbers dates back to Diophantus in the 3rd century and has been a central subject in mathematics for generations. The modern study of Diophantine equations has incorporated the revolutionary idea of Riemann from his use of a class of special functions called "zeta functions” or "L-functions". Such special functions are built up on counting the numbers of solutions of polynomial equations in the much simpler setting of modular arithmetic. In the 1960s, Birch and Swinnerton-Dyer came up with a remarkable conjecture revealing a relation between the zeros of L-functions and the solutions to a special class of polynomial equations in the rationals. Later Beilinson and Bloch conjectured that, for general polynomial equations in the rationals, there should always be a relation between the zeros of L-functions and algebraic cycles which are “parameter solutions to polynomial equations”. The project will study the zeros of L-functions through automorphic forms and special cycles on modular varieties. The theory of automorphic form provides a fruitful way to access the zeros of L-functions. The modular varieties are either Shimura varieties over number fields or moduli spaces of Shtukas over function fields. They play a central role in modern number theory and arithmetic geometry, and they often come with a great supply of algebraic cycles. The project aims to prove results relating zeros of L-functions and algebraic cycles on modular varieties, including new cases of the arithmetic Gan–Gross–Prasad conjecture for Shimura varieties associated to unitary groups, certain Higher Gross–Zagier formula over function fields, and the function field analog of Kudla’s program with an emphasis on the modularity of generating series of special cycles and the arithmetic Siegel—Weil formula. The project will also develop new relative trace formula, a powerful equation connecting spectral information and geometric structure, to study general automorphic period integral including the unitary Friedberg–Jacquet period. The broader impacts of this project include mentoring of graduate students and seminar organization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This awards concern research in Number Theory. Solving polynomial equations in rational numbers dates back to Diophantus in the 3rd century and has been a central subject in mathematics for generations. The modern study of Diophantine equations has incorporated the revolutionary idea of Riemann from his use of a class of special functions called "zeta functions” or "L-functions". Such special functions are built up on counting the numbers of solutions of polynomial equations in the much simpler setting of modular arithmetic. In the 1960s, Birch and Swinnerton-Dyer came up with a remarkable conjecture revealing a relation between the zeros of L-functions and the solutions to a special class of polynomial equations in the rationals. Later Beilinson and Bloch conjectured that, for general polynomial equations in the rationals, there should always be a relation between the zeros of L-functions and algebraic cycles which are “parameter solutions to polynomial equations”. The project will study the zeros of L-functions through automorphic forms and special cycles on modular varieties. The theory of automorphic form provides a fruitful way to access the zeros of L-functions. The modular varieties are either Shimura varieties over number fields or moduli spaces of Shtukas over function fields. They play a central role in modern number theory and arithmetic geometry, and they often come with a great supply of algebraic cycles. The project aims to prove results relating zeros of L-functions and algebraic cycles on modular varieties, including new cases of the arithmetic Gan–Gross–Prasad conjecture for Shimura varieties associated to unitary groups, certain Higher Gross–Zagier formula over function fields, and the function field analog of Kudla’s program with an emphasis on the modularity of generating series of special cycles and the arithmetic Siegel-Weil formula. The project will also develop new relative trace formula, a powerful equation connecting spectral information and geometric structure, to study general automorphic period integral including the unitary Friedberg–Jacquet period. The broader impacts of this project include mentoring of graduate students and seminar organization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Zhang其他文献
Relationship between fracture toughness and stretched zone width, shear band length and crack tip opening displacement on specimen surface in bulk metallic glasses
大块金属玻璃断裂韧性与拉伸区宽度、剪切带长度和试样表面裂纹尖端张开位移的关系
- DOI:
10.2320/jinstmet.72.305 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
N. Yoshida;Hitoo Tokunaga;K. Fujita;N. Nishiyama;Y. Yokoyama;Wei Zhang;H. Kimura;A. Inoue - 通讯作者:
A. Inoue
Static and dynamic analyses of graphene-reinforced aluminium-based composite plate in thermal environment
热环境下石墨烯增强铝基复合板的静动态分析
- DOI:
10.1016/j.ast.2020.106354 - 发表时间:
2020-11 - 期刊:
- 影响因子:5.6
- 作者:
Jia-Jia Mao;Wei Zhang;HM Lu - 通讯作者:
HM Lu
Formation and properties of Fe25Co25Ni25(P, C, B, Si)(25) high-entropy bulk metallic glasses
Fe25Co25Ni25(P,C,B,Si)25高熵块体金属玻璃的形成及性能
- DOI:
10.1016/j.jnoncrysol.2018.02.021 - 发表时间:
2018 - 期刊:
- 影响因子:3.5
- 作者:
Yongqiang Xu;Yanhui Li;Zhengwang Zhu;Wei Zhang - 通讯作者:
Wei Zhang
Characterization and adsorption performance of biochars derived from three key biomass constituents
来自三种关键生物质成分的生物炭的表征和吸附性能
- DOI:
10.1016/j.fuel.2020.117142 - 发表时间:
2020-06 - 期刊:
- 影响因子:7.4
- 作者:
Jiang Wan;Lin Liu;Wei Zhang - 通讯作者:
Wei Zhang
Adaptive estimation-based hierarchical model predictive control methodology for battery active equalization topologies: Part I–Balancing strategy
基于自适应估计的电池主动均衡拓扑分层模型预测控制方法:第一部分——平衡策略
- DOI:
10.1016/j.est.2021.103235 - 发表时间:
2021-10 - 期刊:
- 影响因子:9.4
- 作者:
Ya-Xiong Wang;Hao Zhong;Jianwei Li;Wei Zhang - 通讯作者:
Wei Zhang
Wei Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Zhang', 18)}}的其他基金
REU Site: Computer Systems Research
REU 网站:计算机系统研究
- 批准号:
2349076 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
- 批准号:
2246796 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Cybersecurity Talent Development in Kentucky
CyberCorps 服务奖学金:肯塔基州的网络安全人才发展
- 批准号:
2145929 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: REU Site: The Great Lakes Wind Energy Challenges (REU-GLWind)
合作研究:REU 站点:五大湖风能挑战 (REU-GLWind)
- 批准号:
2150000 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Tailoring Terahertz Emission in Ultrafast Multi-Functional Devices using Reduced-Dimensional Hybrid Metal Perovskites
使用降维混合金属钙钛矿定制超快多功能设备中的太赫兹发射
- 批准号:
2245058 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Quantum Spintronic Device Building Blocks with Magnetically Ordered Materials
职业:采用磁有序材料的量子自旋电子器件构建块
- 批准号:
2246254 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Scholarships, Community, and High-impact Practices to Improve Undergraduate Student Success in Computer Science and Engineering
奖学金、社区和高影响力实践可提高本科生在计算机科学与工程方面的成功
- 批准号:
2030427 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Mechanically Entwined Double Helical Covalent Polymers
机械缠绕双螺旋共价聚合物
- 批准号:
2108197 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
REU Site: Undergraduate Research Experiences in Computer Systems at University of Louisville
REU 网站:路易斯维尔大学计算机系统本科生研究经验
- 批准号:
2050925 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Flow Physics of Transient Rooftop Vortices at High Reynolds Numbers and Bio-Inspired Flow Control Strategies to Mitigate Wind Hazards
职业:高雷诺数瞬态屋顶涡流的流动物理学和减轻风害的仿生流动控制策略
- 批准号:
1944776 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Topics in Automorphic forms and Spectral Theory
自守形式和谱论主题
- 批准号:
2417008 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Studentship
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
2005654 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Building Bridges: Fifth EU/US Summer School on Automorphic Forms and Related Topics
搭建桥梁:第五届欧盟/美国自守形式及相关主题暑期学校
- 批准号:
1951791 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1854113 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1802058 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1701585 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1601959 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Building Bridges: 2nd EU/US Summer School & Workshop on Automorphic Forms and Related Topics, June 30-July 1, 2014
搭建桥梁:第二届欧盟/美国暑期学校
- 批准号:
1407077 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant