Novel Redox Materials for Hydrogen Generation by High Temperature Water Splitting

用于高温水分解制氢的新型氧化还原材料

基本信息

  • 批准号:
    0756214
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

CBET-0756214PuszynskiWorld oil and other fossil reserves are rather quickly depleting due to growing demands from industrialized and developing countries. Therefore, future energy demands must be fulfilled by sustainable energy resources. The Sun provides several thousand times greater energy than the world?s present rate of energy consumption. Harnessing solar radiation and its effective conversion to hydrogen energy carrier from abundant source such as water will easily meet the current and future global energy requirements. Hydrogen is one of the most promising fuels because it is very environmentally friendly gas which once combusted generates water as a product. There are several technologies currently available for hydrogen production. Although electrolysis of water can still be a preferred option, solar thermochemical technology is also gaining significant importance due to potentially lower capital investment requirements. In thermochemical process, water is heated using a solar concentrator and steam thus produced is made to pass over a catalytically active bed of complex inorganic oxide materials in a reactor which splits water readily releasing hydrogen and retaining oxygen in a solid phase. However, this process requires significantly different temperatures for the hydrogen generation and catalyst regeneration steps. Thus, successful implementation of this process is still at trade-off with other technologies. Direct water splitting is by far more challenging since the thermal dissociation of water requires very high temperatures (2200oC) and the separation of generated oxygen from hydrogen is very challenging at these conditions. The goal of this research is to synthesize novel redox materials (e.g. ferrites) preferably in the form of foam-like materials using sol-gel and self-propagating high temperature synthesis methods coupled with microwave processing. These materials will have very high surface area and complex crystalline structure that will significantly increase the effectiveness of the water-splitting process. The proposed research will provide fundamental understanding of the hydrogen generation from water and mechanistic aspects of the ionic transport processes occurring in the complex crystalline redox materials. The research activities will focus on the determination of the efficiency of water splitting process using novel redox materials in a tubular reactor. After successful completion of the proposed research work, we will be equipped to generate hydrogen on a larger scale in a continuous manner utilizing solar energy as a heating source. The proposed research activity will have significant impact on students, scientific community, and energy industries. This project will provide training to graduate and undergraduate students in the area of alternative and sustainable energy supply. Additionally, PI and Co-PI will incorporate their interesting research findings into undergraduate and graduate education. During the proposed research period, investigators will enhance outreach activity by providing presentations and hands-on experience with alternative energy sources to Native Americans and high school students and K-12 teachers. Thus, major impacts of this research will include the technology advancements that move us towards alternative energy sources, the development of human resources in science and engineering, and integration of teaching and research.
由于工业化国家和发展中国家日益增长的需求,世界石油和其他化石储量正在相当迅速地枯竭。因此,未来的能源需求必须由可持续能源来满足。太阳提供的能量是世界的几千倍?S目前的能源消耗率。利用太阳辐射并将其从丰富的资源(如水)有效地转化为氢能载体,将很容易满足当前和未来的全球能源需求。氢是最有前景的燃料之一,因为它是一种非常环保的气体,一旦燃烧就会产生水。目前有几种技术可用于制氢。尽管电解水仍然是首选选择,但由于潜在的较低的资本投资要求,太阳能热化学技术也变得非常重要。在热化学过程中,水使用太阳能聚光器加热,由此产生的蒸汽通过反应器中复杂的无机氧化物材料的催化活性床,该反应器容易将水分解,释放氢气并将氧气保留在固相中。然而,这一过程对制氢和催化剂再生步骤的温度要求有很大的不同。因此,这一进程的成功实施仍然需要与其他技术进行权衡。直接分解水的难度要大得多,因为水的热解离需要非常高的温度(2200摄氏度),而在这些条件下从氢中分离生成的氧是非常具有挑战性的。本研究的目标是利用溶胶-凝胶法和自蔓延高温合成法结合微波处理来合成新型氧化还原材料(例如铁氧体),最好是泡沫状材料。这些材料将具有非常高的表面积和复杂的晶体结构,这将显著提高水分解过程的效率。拟议的研究将提供对水产生氢的基本理解,以及复杂晶体氧化还原材料中发生的离子传输过程的机理方面。研究活动将集中于确定管式反应器中使用新型氧化还原材料的水分解过程的效率。在成功完成拟议的研究工作后,我们将有能力利用太阳能作为加热源,连续更大规模地生产氢气。拟议的研究活动将对学生、科学界和能源行业产生重大影响。该项目将为研究生和本科生提供替代能源和可持续能源供应领域的培训。此外,PI和Co-PI将把他们有趣的研究成果纳入本科生和研究生教育。在拟议的研究期间,调查人员将通过向美洲原住民、高中生和K-12教师提供替代能源的演示和实践经验来加强外联活动。因此,这项研究的主要影响将包括推动我们转向替代能源的技术进步、科学和工程人力资源的开发以及教学和研究的一体化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Puszynski其他文献

Jan Puszynski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Puszynski', 18)}}的其他基金

Combustion Synthesis of Nanocomposite Materials
纳米复合材料的燃烧合成
  • 批准号:
    0327962
  • 财政年份:
    2003
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing grant
Integration of Design Project and Aspen Plus Process Simulator Through 4-Year Undergraduate Chemical Engineering Curriculum
通过四年制本科化学工程课程整合设计项目和 Aspen Plus 过程模拟器
  • 批准号:
    9752219
  • 财政年份:
    1998
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Fundamental Studies of High Pressure Self-Sustaining Synthesis of Silicon Nitride Based Ceramics
高压自持合成氮化硅基陶瓷的基础研究
  • 批准号:
    9700503
  • 财政年份:
    1997
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
RESEARCH INITIATION AWARD: Modeling and Experimental Studies of Simultaneous Combustion Synthesis and Densification
研究启动奖:同时燃烧合成和致密化的建模和实验研究
  • 批准号:
    9309561
  • 财政年份:
    1993
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant

相似国自然基金

马尾松体胚发生中GSH介导的Redox系统双效性及其作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
Redox变化条件下溶解性硅对地下水砷物种迁移转化的影响研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
动态redox条件下生物铁矿物对地下水低渗透区三氯乙烯迁移转化影响机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
酮体β-羟丁酸调控Redox稳态及线粒体反向电子传递减轻心肺复苏脑损伤的机制研究
  • 批准号:
    82072132
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
适度补硒对酒精性肝损伤的拮抗作用及机制研究:Insulin信号调控的Redox稳态和ADH1-ALDH2平衡
  • 批准号:
    31900892
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Redox动态变化下潜流带中氯乙酰胺类除草剂转化过程的碳氯同位素解析
  • 批准号:
    41772263
  • 批准年份:
    2017
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
镉致Redox平衡失调氧化损伤的时效、量效与干预机制的研究
  • 批准号:
    81473010
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
汉江平原潜流带Redox变化特征及有机磷农药迁移转化机理
  • 批准号:
    41372255
  • 批准年份:
    2013
  • 资助金额:
    93.0 万元
  • 项目类别:
    面上项目
谷胱甘肽及其介导的redox信号调控番茄体内百菌清降解代谢的机理研究
  • 批准号:
    31301769
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
redox信号介导的6-BA调控黄瓜弱光适应性的生理与分子机制
  • 批准号:
    31301818
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Surface Engineered and Highly Redox Active Polar Oxide Host Materials Immobilizing Lithium Polysulfides for Long-Life and High-Performance Li-S Batteries
表面工程和高氧化还原活性极性氧化物主体材料固定多硫化锂,用于长寿命和高性能锂硫电池
  • 批准号:
    2427263
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
  • 批准号:
    2323989
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
  • 批准号:
    2323988
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Development of cathode active materials bearing a naturally occurring chlorophyll framework for redox flow batteries.
开发用于氧化还原液流电池的带有天然叶绿素框架的阴极活性材料。
  • 批准号:
    23K13781
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conjugated and redox active polymers and hybrid materials
共轭和氧化还原活性聚合物和杂化材料
  • 批准号:
    RGPIN-2022-04319
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Grants Program - Individual
New organic materials for symmetric redox flow batteries
用于对称氧化还原液流电池的新型有机材料
  • 批准号:
    571668-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    University Undergraduate Student Research Awards
Redox control of bacterial cells using metal porous materials
使用金属多孔材料控制细菌细胞的氧化还原
  • 批准号:
    22K18932
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Towards the Rational Design of Ni & Co free Chalcogen Anion Redox Cathode Materials
走向Ni的合理设计
  • 批准号:
    2127519
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
New Redox-Active Organic pi-Conjugated Building Blocks for Functional Nanoscale Materials and Devices
用于功能纳米材料和器件的新型氧化还原活性有机π共轭结构单元
  • 批准号:
    RGPIN-2016-04707
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Grants Program - Individual
Surface Engineered and Highly Redox Active Polar Oxide Host Materials Immobilizing Lithium Polysulfides for Long-Life and High-Performance Li-S Batteries
表面工程和高氧化还原活性极性氧化物主体材料固定多硫化锂,用于长寿命和高性能锂硫电池
  • 批准号:
    2118784
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了