Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations

合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计

基本信息

  • 批准号:
    2323989
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description: Rare-earth elements and platinum group metals are critical elements for applications ranging from smartphones and light-emitting-diode (LED) lights to green energy technologies. Other countries mine and process most of the world’s REE supply. US mines can contribute to 15% of the world’s annual supply of rare-earth elements. However, US mines produce mixtures of these elements, which cannot be used in applications until they are separated from one another. This program will develop sustainable strategies for separating and recovering rare-earth elements and platinum group metals from waste streams. This project will utilize electrically-driven separations to separate these valuable elements. This approach is modular, reversible, minimize waste, and can be driven by renewable sources. Electrode materials that bind these elements will be developed from conductive polymers and carbon nanotubes. Beyond contributing to the critical materials economy, the knowledge gained can be applied to other challenging separations, like removing heavy metals and toxic contaminants from water. This project will also help educate and cultivate a diverse future workforce with key competencies in data science, computation, and experiments. New educational content will be released, students will be trained on advanced materials topics, and K-12 outreach programs will be implemented. Technical Description: Electrochemical charge-transfer materials have been proposed as new-generation technologies for separation processes, including water desalination, critical element recovery, and remediation of toxic contaminants. Electrically-driven systems offer significant advantages such as integration with renewable energy, elimination of secondary pollutants or regeneration chemicals by being solely electrochemically regenerable, and modularity. However, recovery of platinum group metals (PGMs) and rare-earth elements (REEs) is a significant challenge for separations science because these elements are found as dilute ions in the presence of excess levels of competing species and with complex speciation depending on pH and ion concentration – and the applicability of electroseparations to REEs and PGMs is severely limited by the fundamental lack of molecular selectivity. This program will develop and implement efficient electrochemical systems for REE and PGM recovery by discovering new polymer-based electrode materials with innovative adsorbate–ion interaction modes, which provide highly selective yet reversible binding. Though typical design approaches employ energy storage materials or use trial­and­error, where machine learning (ML) trained on molecular dynamics (MD) simulations and experimental data will guide chemical selection, synthesis, and electrode ink creation to produce ion-selective yet processable redox­polymers. The simultaneous design of molecular binding and polymer secondary structure in a closed­loop can help accelerate downstream deployment of advanced redox­materials. MD­guided selection of polymer backbones and solvents that maximize ink stability, paired with advanced rheology and coating processes, will enable the creation of electrosorbents with desired macroscopic properties through scaleup, overcoming solubility and processing challenges typical of redox­polymers. Iteration between computation and experiments will produce a framework for rationally designing redox electrodes that, in addition to addressing critical element mixtures of direct relevance to mining and critical materials recycling, can be extended to address challenges in water desalination and environmental remediation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:稀土元素和铂族金属是从智能手机和发光二极管(LED)灯到绿色能源技术等各种应用的关键元素。其他国家开采和加工了世界上大部分的稀土供应。全球稀土元素年供应量中,有15%来自美国矿场。然而,美国矿山生产这些元素的混合物,在它们彼此分离之前,这些元素不能用于应用。该计划将制定可持续的战略,从废气中分离和回收稀土元素和铂族金属。该项目将利用电力驱动的分离来分离这些有价值的元素。这种方法是模块化的、可逆的、最大限度地减少浪费,并且可以由可再生能源驱动。结合这些元素的电极材料将由导电聚合物和碳纳米管开发出来。除了对关键材料经济做出贡献外,所获得的知识还可以应用于其他具有挑战性的分离,比如从水中去除重金属和有毒污染物。该项目还将帮助教育和培养具有数据科学、计算和实验方面关键能力的多样化的未来劳动力。将发布新的教育内容,学生将接受关于高级材料主题的培训,并将实施K-12推广计划。技术描述:电化学电荷转移材料已被提出作为分离过程的新一代技术,包括水淡化、关键元素回收和有毒污染物的修复。电力驱动系统提供了显著的优势,如与可再生能源的集成,通过完全电化学可再生消除二次污染物或再生化学品,以及模块化。然而,铂族金属(PGMs)和稀土元素(REE)的回收是分离科学面临的一个重大挑战,因为这些元素在竞争物种水平过高的情况下以稀离子的形式存在,并且存在取决于pH和离子浓度的复杂形态--而电分离对稀土和稀土元素的适用性受到分子选择性基本缺乏的严重限制。该计划将通过发现具有创新的吸附-离子相互作用模式的新型聚合物电极材料,提供高选择性但可逆的结合,开发和实施高效的REE和PGM回收电化学系统。虽然典型的设计方法使用储能材料或使用反复试验,但经过分子动力学(MD)模拟和实验数据训练的机器学习(ML)将指导化学选择、合成和电极墨水的创造,以生产离子选择性但可加工的氧化还原聚合物。在闭环中同时设计分子结合和聚合物二级结构有助于加快先进氧化还原材料的下游部署。可最大化油墨稳定性的聚合物主链和溶剂的选择,再加上先进的流变学和涂布工艺,将能够通过放大创建具有所需宏观性能的电吸附剂,克服氧化还原聚合物典型的溶解性和加工挑战。计算和实验之间的迭代将产生一个合理设计氧化还原电极的框架,除了解决与采矿和关键材料回收直接相关的关键元素混合物外,还可以扩展到解决水淡化和环境修复方面的挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michelle Calabrese其他文献

Michelle Calabrese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michelle Calabrese', 18)}}的其他基金

CAREER: Beyond alignment: novel mechanisms for controlling block copolymer phase behavior using magnetic fields
职业:超越排列:利用磁场控制嵌段共聚物相行为的新机制
  • 批准号:
    2143162
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了