SILVAngs: The next Generation analysis system for ribosomal RNA genes

SILVAngs:下一代核糖体 RNA 基因分析系统

基本信息

  • 批准号:
    186840243
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research data and software (Scientific Library Services and Information Systems)
  • 财政年份:
    2011
  • 资助国家:
    德国
  • 起止时间:
    2010-12-31 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The SILVA ribosomal RNA databases were established in 2007 to provide high-quality reference databases of aligned rRNA gene sequences for all three domains of life. With the discontinuation of the "European Ribosomal RNA Database Project", SILVA became the authoritative rDNA database project for Europe. With the dramatic change in sequencing technologies and capacities, the possibilities for analysis and inventory of microbial diversity ranging from Bacteria and Archaea to small Eukaryota have reached an unprecedented dimension. Fuelled by nearly unlimited capacities, a typical project does no longer consist of several hundreds of cloned rDNA sequences, but of thousands to millions of rDNA amplicon tags produced by next generation sequencing technologies (NGS). The pure capacity to produce data, as well as the sheer amount of available data does not "per se" result in the production of biological knowledge. To advance science and application, researchers in academia and industry must be enabled to: 1. analyse their data and 2. compare their data. Consequently, the goal of this application is to: 1. extend the SILVAngs analysis pipeline with innovative analysis tools including statistical analysis, 2. facilitate incentives making SILVAngs projects results publicly available, 3. process a set of publicly available, experimentally well designed, highly contextualized, high quality rDNA datasets (flagships) of the "Sequence Read Archive" with the SILVAngs pipeline. Over time this will result in a growing reference data set of high quality rRNA gene NGS projects publicly available for in depth comparisons across biological domains. The overall objective of this application is to facilitate and standardize the processing of amplicon based rRNA marker gene data, enhance the archiving of richly contextualized NGS sequences in the public repository´s (INSDC), as well as improving the re-usability of sequence data in SRA
SILVA核糖体RNA数据库建立于2007年,旨在为生命的所有三个领域提供高质量的比对rRNA基因序列参考数据库。随着“欧洲核糖体RNA数据库计划”的终止,SILVA成为欧洲权威的rDNA数据库计划。随着测序技术和能力的巨大变化,从细菌和微生物多样性到小真核生物的分析和库存的可能性已经达到了前所未有的程度。在几乎无限的能力的推动下,一个典型的项目不再由数百个克隆的rDNA序列组成,而是由下一代测序技术(NGS)产生的数千到数百万个rDNA扩增子标签组成。产生数据的纯粹能力以及现有数据的绝对数量“本身”并不导致生物知识的产生。为了推进科学和应用,学术界和工业界的研究人员必须能够:1。分析数据,2。比较他们的数据。因此,本申请的目标是:1.使用包括统计分析在内的创新分析工具扩展SILVAngs分析管道; 2.促进激励措施,使SILVAng项目的成果公开,3.使用SILVAngs pipeline处理一组公开可用的、实验设计良好的、高度情境化的、高质量的“Sequence Read Archive”rDNA数据集(旗舰)。随着时间的推移,这将导致越来越多的高质量rRNA基因NGS项目的参考数据集公开,可用于跨生物学领域的深入比较。该应用程序的总体目标是促进和标准化基于扩增子的rRNA标记基因数据的处理,增强公共知识库(INSDC)中丰富背景化NGS序列的存档,以及提高SRA中序列数据的可重用性

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Frank Oliver Glöckner其他文献

Professor Dr. Frank Oliver Glöckner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Frank Oliver Glöckner', 18)}}的其他基金

Digitisation / Cataloguing of non-textual objects: Towards an integrative and comprehensive standard for meta-omics data of collection objects (MOD-CO)
非文本对象的数字化/编目:建立集合对象元组学数据的综合综合标准(MOD-CO)
  • 批准号:
    248069971
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Cataloguing and Digitisation (Scientific Library Services and Information Systems)

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
  • 批准号:
    10092859
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
  • 批准号:
    10100109
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
  • 批准号:
    DP240101322
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
PhD in the Next Generation of Organic LEDs
下一代有机 LED 博士
  • 批准号:
    2904651
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
  • 批准号:
    EP/Y028287/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
  • 批准号:
    MR/Y019601/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了