Interactions of Classical and Numerical Algebraic Geometry
经典与数值代数几何的相互作用
基本信息
- 批准号:0756904
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-15 至 2009-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is a classical discipline which has for many years been situated at the intersection of algebra, number theory, several complex variables, and geometry in all its incarnations. The advent of personal computing, and more so the development of software for symbolic computation, introduced a new facet of the discipline; it was suddenly possible to carry out computations far too sophisticated to be handled manually. More recently, a numerical approach to algebraic geometry was pioneered, largely driven by the work of Sommese, Verschelde, and Wampler. This new field is aptly known as numerical algebraic geometry. The fundamental technique of this field, known as homotopy continuation, provides a numerical means of tracking the changing geometry resulting from algebraically morphing one system of polynomial equations into another. The ubiquity of polynomial systems throughout the sciences and engineering means that the techniques of numerical algebraic geome try may be used to solve problems arising in many different disciplines, such as kinematics, chemistry, economics, robot vision, and power electronics.It has recently been realized that the techniques of numerical algebraic geometry may be used to study problems in classical algebraic geometry as well. The purpose of this conference is to bring together classical and numerical algebraic geometers in a lively discussion forum to spark joint efforts between these two communities. The intersection of these two fields is ripe for rapid growth fueled by joint work, so it is the hope of the organizers that these interactions will help to yield important advances along this front. The conference will take place at the University of Notre Dame from May 22 to May 24, 2008. There will be 13 lectures over those three days, given by eminent scholars from both communities and from various locations throughout Europe and the U.S. As this field seems poised to spawn many new avenues of research, the participation of young mathematicians will be actively sought.
代数几何是一个经典的纪律,多年来一直位于交叉代数,数论,几个复杂的变量,并在其所有化身几何。 个人计算机的出现,尤其是符号计算软件的发展,为这门学科带来了一个新的方面;突然之间,人们可以进行过于复杂而无法手动处理的计算。 最近,代数几何的数值方法是开创性的,主要是由Sommese,Verschelde和Wampler的工作驱动的。 这个新领域被恰当地称为数值代数几何。 这个领域的基本技术,被称为同伦延拓,提供了一种数值方法来跟踪从一个多项式方程组代数变形到另一个多项式方程组所产生的几何变化。 多项式系统在科学和工程中的普遍存在意味着数值代数几何技术可以用来解决许多不同学科中出现的问题,如运动学、化学、经济学、机器人视觉和电力电子学。最近人们意识到,数值代数几何技术也可以用来研究经典代数几何中的问题。 这次会议的目的是汇集古典和数值代数几何学家在一个活跃的讨论论坛,以激发这两个社区之间的共同努力。 这两个领域的交叉点已经成熟,可以在联合工作的推动下迅速发展,因此组织者希望这些互动将有助于在这条战线上取得沿着的重要进展。 会议将于2008年5月22日至5月24日在圣母大学举行。 在这三天里,将有13场讲座,由来自两个社区和欧洲和美国各地的著名学者主讲,因为这一领域似乎有望产生许多新的研究途径,将积极寻求年轻数学家的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Bates其他文献
To Human Ecology's Readers, Reviewers, and Contributors
- DOI:
10.1023/a:1022845324702 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.700
- 作者:
Daniel Bates - 通讯作者:
Daniel Bates
Regulatory DNA keyholes enable specific and persistent multi-gene expression programs in primary T cells without genome modification
调节性 DNA 钥匙孔可在原代 T 细胞中实现特定且持久的多基因表达程序,无需基因组修饰
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Wilken;Christie Ciarlo;Jocelynn R Pearl;Jordana C. Bloom;Elaine V. Schanzer;Hanna Liao;S. Boyken;Benjamin Van Biber;Konstantin Queitsch;Gregory Heberlein;Alexander J. Federation;Reyes Acosta;Shinny Vong;Ericka Otterman;D. Dunn;Hao Wang;Pavel Zrazhevskey;V. Nandakumar;Daniel Bates;R. Sandstrom;Zibo Chen;F. Urnov;D. Baker;Alister P. W. Funnell;Shon Green;J. Stamatoyannopoulos - 通讯作者:
J. Stamatoyannopoulos
Quantitative dialing of gene expression via precision targeting of KRAB repressor
通过精确靶向 KRAB 阻遏物定量调控基因表达
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Wilken;Christie Ciarlo;Jocelynn R Pearl;Elaine V. Schanzer;Hanna Liao;B. V. Biber;Konstantin Queitsch;Jordana C. Bloom;Alexander J. Federation;Reyes Acosta;Shinny Vong;Ericka Otterman;D. Dunn;Hao Wang;P. Zrazhevskiy;V. Nandakumar;Daniel Bates;R. Sandstrom;F. Urnov;Alister P. W. Funnell;Shon Green;J. Stamatoyannopoulos - 通讯作者:
J. Stamatoyannopoulos
The visual system prioritizes locations near corners of surfaces (not just locations near a corner)
视觉系统优先考虑表面拐角附近的位置(不仅仅是拐角附近的位置)
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Marco Bertamini;Mai Helmy;Daniel Bates - 通讯作者:
Daniel Bates
Configurable memory systems for embedded many-core processors
用于嵌入式众核处理器的可配置存储器系统
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Daniel Bates;Alex Chadwick;R. Mullins - 通讯作者:
R. Mullins
Daniel Bates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Bates', 18)}}的其他基金
SI2-SSE: Collaborative Proposal: Symbolic-Numeric Approaches to Polynomials
SI2-SSE:协作提案:多项式的符号数值方法
- 批准号:
1440467 - 财政年份:2014
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
CONFERENCE: Tutorials in Applicable Algebraic Geometry
会议:适用代数几何教程
- 批准号:
1321473 - 财政年份:2013
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Preconditioning, analysis, and applications of numerical algebraic geometry methods
数值代数几何方法的预处理、分析和应用
- 批准号:
1115668 - 财政年份:2011
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Magnetic Viscosity and Thermoremanent Magnetization in Interacting Single-domain Ferromagnets
CMG 合作研究:相互作用单畴铁磁体中的磁粘度和热剩磁化
- 批准号:
1025564 - 财政年份:2010
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Reality, exactness, and computation in numerical algebraic geometry
数值代数几何中的真实性、精确性和计算
- 批准号:
0914674 - 财政年份:2009
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Fertility, Family, and Society in Istanbul, 1880-1940
伊斯坦布尔的生育率、家庭和社会,1880 年至 1940 年
- 批准号:
8519748 - 财政年份:1986
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
相似海外基金
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
- 批准号:
2347622 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Fellowship
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
- 批准号:
MR/Y003845/1 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Fellowship
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Continuing Grant
A Polytopal View of Classical Polynomials
经典多项式的多面观
- 批准号:
2348676 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
- 批准号:
2330974 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336136 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant














{{item.name}}会员




