CONFERENCE: Tutorials in Applicable Algebraic Geometry

会议:适用代数几何教程

基本信息

  • 批准号:
    1321473
  • 负责人:
  • 金额:
    $ 1.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

There has recently been a significant increase in the application of the methods of algebraic geometry to problems outside of mathematics. The resulting interdisciplinary work necessarily entails much interaction between experts in algebraic geometry and those from other disciplines. The PI will run a workshop July 29-31, 2013 focused on introducing non-experts to two fundamental tools rooted in algebraic geometry: numerical algebraic geometry and toric geometry. Authors of recent books in these two areas will give lectures: Frank Sottile and Jonathan Hauenstein for numerical algebraic geometry, John Little and Hal Schenck for toric geometry. These lectures will serve as a rapid introduction to the methods and software from these two areas, focused on the value for problems coming from applications. This meeting will take place at the Pingree Park mountain campus of Colorado State University.Mathematical problems in application areas can sometimes be converted into a certain type of problem, the polynomial system. For years, there was no efficient way to solve polynomial systems, so researchers had to find different, sometimes less desirable, formulations for their problems. However, with recent developments in numerical algebraic geometry and toric geometry, it is now reasonable to solve relatively large polynomial systems directly. These new computational tools open the door to study problems that were previously too difficult to consider. For example, in kinematics, the introduction of numerical algebraic geometry has already resulted in the ability to solve long-standing problems and to discover new mechanisms with special properties. The workshop supported by this award will help to expedite the use of these powerful new tools by the researchers who need them.
最近,代数几何方法在数学以外的问题中的应用有了显着的增加。由此产生的跨学科工作必然需要代数几何专家和来自其他学科的专家之间的大量互动。PI将于2013年7月29日至31日举办一次研讨会,重点向非专家介绍两种植根于代数几何的基本工具:数值代数几何和环面几何。这两个领域新书的作者将进行演讲:弗兰克·索蒂尔和乔纳森·豪恩斯坦关于数值代数几何,约翰·利特尔和哈尔·申克关于环面几何。这些讲座将作为对这两个领域的方法和软件的快速介绍,重点关注来自应用程序的问题的价值。这次会议将在科罗拉多州立大学平利公园山区校区举行。应用领域的数学问题有时可以转化为某种类型的问题,即多项式系统。多年来,一直没有有效的方法来求解多项式系统,因此研究人员不得不为他们的问题找到不同的、有时不太可取的公式。然而,随着数值代数几何和环面几何的发展,现在直接求解相对较大的多项式系统是合理的。这些新的计算工具为研究以前太难考虑的问题打开了大门。例如,在运动学中,数值代数几何的引入已经导致了解决长期存在的问题和发现具有特殊性质的新机构的能力。由该奖项支持的研讨会将帮助需要这些工具的研究人员加快使用这些强大的新工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Bates其他文献

To Human Ecology's Readers, Reviewers, and Contributors
  • DOI:
    10.1023/a:1022845324702
  • 发表时间:
    2003-03-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Daniel Bates
  • 通讯作者:
    Daniel Bates
Quantitative dialing of gene expression via precision targeting of KRAB repressor
通过精确靶向 KRAB 阻遏物定量调控基因表达
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Wilken;Christie Ciarlo;Jocelynn R Pearl;Elaine V. Schanzer;Hanna Liao;B. V. Biber;Konstantin Queitsch;Jordana C. Bloom;Alexander J. Federation;Reyes Acosta;Shinny Vong;Ericka Otterman;D. Dunn;Hao Wang;P. Zrazhevskiy;V. Nandakumar;Daniel Bates;R. Sandstrom;F. Urnov;Alister P. W. Funnell;Shon Green;J. Stamatoyannopoulos
  • 通讯作者:
    J. Stamatoyannopoulos
Regulatory DNA keyholes enable specific and persistent multi-gene expression programs in primary T cells without genome modification
调节性 DNA 钥匙孔可在原代 T 细胞中实现特定且持久的多基因表达程序,无需基因组修饰
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Wilken;Christie Ciarlo;Jocelynn R Pearl;Jordana C. Bloom;Elaine V. Schanzer;Hanna Liao;S. Boyken;Benjamin Van Biber;Konstantin Queitsch;Gregory Heberlein;Alexander J. Federation;Reyes Acosta;Shinny Vong;Ericka Otterman;D. Dunn;Hao Wang;Pavel Zrazhevskey;V. Nandakumar;Daniel Bates;R. Sandstrom;Zibo Chen;F. Urnov;D. Baker;Alister P. W. Funnell;Shon Green;J. Stamatoyannopoulos
  • 通讯作者:
    J. Stamatoyannopoulos
The visual system prioritizes locations near corners of surfaces (not just locations near a corner)
视觉系统优先考虑表面拐角附近的位置(不仅仅是拐角附近的位置)
Configurable memory systems for embedded many-core processors
用于嵌入式众核处理器的可配置存储器系统
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Bates;Alex Chadwick;R. Mullins
  • 通讯作者:
    R. Mullins

Daniel Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Bates', 18)}}的其他基金

SI2-SSE: Collaborative Proposal: Symbolic-Numeric Approaches to Polynomials
SI2-SSE:协作提案:多项式的符号数值方法
  • 批准号:
    1440467
  • 财政年份:
    2014
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Standard Grant
Preconditioning, analysis, and applications of numerical algebraic geometry methods
数值代数几何方法的预处理、分析和应用
  • 批准号:
    1115668
  • 财政年份:
    2011
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Magnetic Viscosity and Thermoremanent Magnetization in Interacting Single-domain Ferromagnets
CMG 合作研究:相互作用单畴铁磁体中的磁粘度和热剩磁化
  • 批准号:
    1025564
  • 财政年份:
    2010
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Standard Grant
Reality, exactness, and computation in numerical algebraic geometry
数值代数几何中的真实性、精确性和计算
  • 批准号:
    0914674
  • 财政年份:
    2009
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Standard Grant
Interactions of Classical and Numerical Algebraic Geometry
经典与数值代数几何的相互作用
  • 批准号:
    0756904
  • 财政年份:
    2008
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Standard Grant
Fertility, Family, and Society in Istanbul, 1880-1940
伊斯坦布尔的生育率、家庭和社会,1880 年至 1940 年
  • 批准号:
    8519748
  • 财政年份:
    1986
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Standard Grant

相似海外基金

A Historical Study of the Origins and Transformation of Tutorials in British Universities
英国大学辅导课起源与变迁的历史研究
  • 批准号:
    22K02246
  • 财政年份:
    2022
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Durable Common Fund Data Interfaces and Tutorials with Bioconductor
持久的共同基金数据接口和 Bioconductor 教程
  • 批准号:
    10356362
  • 财政年份:
    2021
  • 资助金额:
    $ 1.55万
  • 项目类别:
Automated Analysis of Tutorials for Software Frameworks
软件框架教程的自动分析
  • 批准号:
    552275-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.55万
  • 项目类别:
    University Undergraduate Student Research Awards
Creating tutorials for high school science teachers to enhance their instructional skills in inquiry-based study in science
为高中科学教师创建教程,以提高他们在科学探究性学习中的教学技能
  • 批准号:
    20K03224
  • 财政年份:
    2020
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Assessing the effectiveness of writing center tutorials on L2 English writing
评估写作中心教程对二语英语写作的有效性
  • 批准号:
    20K13110
  • 财政年份:
    2020
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Designing and Evaluating User Interfaces that Solicit and Display User Contributions to Online Software Tutorials
设计和评估用户界面,以征求和显示用户对在线软件教程的贡献
  • 批准号:
    504649-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Towards Understanding and Improving Crowd-based Software Video Tutorials
职业:理解和改进基于人群的软件视频教程
  • 批准号:
    1846142
  • 财政年份:
    2019
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Continuing Grant
Designing and Evaluating User Interfaces that Solicit and Display User Contributions to Online Software Tutorials
设计和评估用户界面,以征求和显示用户对在线软件教程的贡献
  • 批准号:
    504649-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Interactive Video-Enhanced Tutorials on Problem Solving in Physics
协作研究:解决物理问题的交互式视频增强教程
  • 批准号:
    1821396
  • 财政年份:
    2018
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactive Video-Enhanced Tutorials on Problem Solving in Physics
协作研究:解决物理问题的交互式视频增强教程
  • 批准号:
    1821391
  • 财政年份:
    2018
  • 资助金额:
    $ 1.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了