BD&I: MoveBank: Integrated database for networked organism tracking.

BD

基本信息

  • 批准号:
    0756920
  • 负责人:
  • 金额:
    $ 113.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-10-01 至 2011-09-30
  • 项目状态:
    已结题

项目摘要

The University of the State of New York is awarded a grant to develop MoveBank, an integrated animal tracking research system for the the research community consisting of a reliable data acquisition and ingestion system, data stream processing and data mining analytics, and extensible architecture that supports various resource sharing models. The project is design to serve a growing global community of animal tracking researchers interested in collaboration. It will have interfaces to facilitate state-of-the-art of data analysis, mining, modeling and visualization tools. The museum will collaborate with Princeton University, the San Diego Supercomputer Center at University of California San Diego and the University of Illinois, Urbana-Champaign.Studying animal movement is of critical importance to addressing environmental challenges including invasive species, infectious diseases, climate and land-use change. New tracking technologies are allowing more researchers to collect more data more easily, but science lacks the cyberinfrastructure to acquire and manage data in a scalable and reliable fashion and need tools to efficiently analyze and integrate these disparate datasets. This situation is made more challenging by the development of environmental observatories that are generating (or promise to generate) extremely large spatially-explicit datasets with automated methods, including GPS, Automated Radio Telemetry Systems (ARTS), and motion-triggered camera networks. The integration of legacy tracking databases together with real-time observatory data streams has the potential to fundamentally advance the science of animal tracking and animal-based environmental forecasting.
纽约州立大学获得了开发MoveBank的资助,MoveBank是一个综合的动物跟踪研究系统,用于研究社区,包括可靠的数据采集和摄取系统,数据流处理和数据挖掘分析,以及支持各种资源共享模型的可扩展架构。该项目旨在为越来越多的对合作感兴趣的动物追踪研究人员提供服务。它将具有接口,以促进最先进的数据分析、挖掘、建模和可视化工具。该博物馆将与普林斯顿大学、加州圣地亚哥大学圣地亚哥超级计算机中心和伊利诺伊大学厄巴纳-香槟分校合作。研究动物运动对应对环境挑战至关重要,包括入侵物种、传染病、气候和土地使用变化。新的跟踪技术使更多的研究人员能够更容易地收集更多的数据,但科学缺乏以可扩展和可靠的方式获取和管理数据的网络基础设施,并且需要工具来有效地分析和整合这些不同的数据集。环境观测站的发展使这种情况更具挑战性,这些环境观测站正在使用自动化方法生成(或承诺生成)非常大的空间明确的数据集,包括GPS,自动无线电遥测系统(ARTS)和运动触发相机网络。将传统跟踪数据库与实时观测数据流相结合,有可能从根本上推进动物跟踪和基于动物的环境预测科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roland Kays其他文献

Optimal timing to estimate moose Alces alces demographic parameters using remote cameras
使用远程摄像机估算驼鹿阿尔克阿尔克人口统计参数的最佳时间
  • DOI:
    10.1038/s41598-025-05603-y
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Hailey Boone;Mark Romanski;Kenneth Kellner;Roland Kays;Lynette Potvin;Gary Roloff;Jerrold Belant
  • 通讯作者:
    Jerrold Belant
Can mammals thrive near urban areas in the Neotropics? Characterizing the community of a reclaimed tropical forest
  • DOI:
    10.1007/s42965-020-00134-1
  • 发表时间:
    2021-01-19
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Stephanie Schuttler;Serano Ramcharan;Hailey Boone;Spencer Stone;Brian J. O’Shea;Krisna Gajapersad;Roland Kays
  • 通讯作者:
    Roland Kays
Mammals in and around suburban yards, and the attraction of chicken coops
  • DOI:
    10.1007/s11252-014-0347-2
  • 发表时间:
    2014-01-26
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Roland Kays;Arielle Waldstein Parsons
  • 通讯作者:
    Arielle Waldstein Parsons
Clarifying assumptions behind the estimation of animal density from camera trap rates
澄清根据相机陷阱率估算动物密度背后的假设
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. M. Rowcliffe;Roland Kays;Roland Kays;C. Carbone;Patrick A. Jansen;Patrick A. Jansen
  • 通讯作者:
    Patrick A. Jansen
The Internet of Animals: what it is, what it could be
动物互联网:它是什么,它可能是什么
  • DOI:
    10.1016/j.tree.2023.04.007
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    17.300
  • 作者:
    Roland Kays;Martin Wikelski
  • 通讯作者:
    Martin Wikelski

Roland Kays的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roland Kays', 18)}}的其他基金

Collaborative Research: Integrated distribution models for North American mammals as tests of niche conservatism.
合作研究:北美哺乳动物的综合分布模型作为生态位保守主义的测试。
  • 批准号:
    2206783
  • 财政年份:
    2022
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Continent-wide forest recruitment change: the interactions between climate, habitat, and consumers
合作研究:全大陆森林补充变化:气候、栖息地和消费者之间的相互作用
  • 批准号:
    2211768
  • 财政年份:
    2022
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR Informatics: Data integration to improve population distribution estimation with animal tracking data
合作研究:IIBR 信息学:数据集成,利用动物追踪数据改进人口分布估计
  • 批准号:
    1914928
  • 财政年份:
    2019
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
Collaborative proposal: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics
合作提案:结合 NEON 和遥感栖息地来确定气候对群落动态的影响
  • 批准号:
    1754656
  • 财政年份:
    2018
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
Collaborative proposal: ABI Sustaining: The Environmental-Data Automated Track Annotation (Env-DATA) system
合作提案:ABI Sustaining:环境数据自动轨迹注释(Env-DATA)系统
  • 批准号:
    1564382
  • 财政年份:
    2016
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
Collaborative Research EAGER-NEON: Probabilistic Forecasting of Biodiversity Response to Intensifying Drought by Combining NEON, National Climate, Species, and Trait Data Bases
合作研究 EAGER-NEON:结合 NEON、国家气候、物种和性状数据库,对生物多样性对加剧干旱的反应进行概率预测
  • 批准号:
    1550907
  • 财政年份:
    2015
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
CyberSEES: Type 2: Collaborative Research: Cyber-infrastructure and Technologies to Support Large-Scale Wildlife Monitoring and Research for Wildlife and Ecology Sustainability
Cyber​​SEES:类型 2:协作研究:支持大规模野生动物监测以及野生动物和生态可持续性研究的网络基础设施和技术
  • 批准号:
    1539622
  • 财政年份:
    2015
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Processes Determining the Abundance of Terrestrial Wildlife Communities Across Large Scales
合作研究:大规模确定陆地野生动物群落丰度的过程
  • 批准号:
    1232442
  • 财政年份:
    2011
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Processes Determining the Abundance of Terrestrial Wildlife Communities Across Large Scales
合作研究:大规模确定陆地野生动物群落丰度的过程
  • 批准号:
    1065822
  • 财政年份:
    2011
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
DEB (Ecology): Seed Dispersal by Central American Agoutis - A Mutualism Conditioned by Predators or Food?
DEB(生态学):中美洲刺豚鼠的种子传播 - 由捕食者或食物调节的互利共生?
  • 批准号:
    0717071
  • 财政年份:
    2007
  • 资助金额:
    $ 113.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了