Collaborative Research: Geometric Time Integrators for Mechanical Dynamical Systems

合作研究:机械动力系统的几何时间积分器

基本信息

  • 批准号:
    0757106
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Time integrators are crucial computational tools for studying nonlinear dynamical systems. Numerous time stepping methods have been developed over the years, many of which are now available in off-the-shelf solvers. However energy drifts and numerical dissipation problems present even in highly accurate algorithms still routinely plague engineering applications. Geometric time integrators have been recently proven greatly useful to elucidate and fix these issues in solid mechanics. Yet these contributions have not carried over to the Eulerian setting, where they could impact both the understanding and the reliability of time integrators for computational fluid dynamics. The goal of this research project is thus to develop novel, geometrically-based Eulerian time integrators for the class of problems whose dynamics is described by an action principle, possibly including dissipation and forcing---which encompasses the canonical Euler and Navier-Stokes equations, as well as many other models. Eulerian discretizations of the Hamilton-Pontryagin principle will be explored, and combined with mathematical and numerical tools such as Discrete Exterior Calculus, the semigroup of positive doubly-stochastic matrices, and implicit functions. Resulting integrators are expected, just like in the Lagrangian setting, to respect the structure of the physics, i.e., to introduce no artificial numerical loss of crucial physical quantities such as energy or circulation.The proposed research activities aim at developing an infrastructure for predictive and high-order accurate simulations of fluid-mechanical systems that combine the power of modern applied geometry with modern computational mechanics. In particular, it promises the introduction of novel variational fluid simulation algorithms: this innovative computational approach relies on a multidisciplinary effort drawing upon techniques from geometric mechanics, discrete geometry, numerical analysis, and graphics, thus promising a broad theoretical and practical impact. The development of such variational integrators from a unified geometric standpoint represents a stepping stone for our long-term goal of solving complex physical phenomena such as a flowing dress, a swimming fish or splashing water, the simulation of which requires considerable improvement of the current state of the art to become commonplace. The research experience acquired during this project is to be disseminated to a wide range of audiences through publishing in mathematics, engineering and computer science journals, books, and conferences, as well as on our web sites, in summer schools, workshops, and other educational activities. Outreach efforts at our three institutions include the recruitment of students from underrepresented groups to help with this research project, leveraging existing efforts for enhancing the participation of women and minorities in scientific research.
时间积分器是研究非线性动力系统的重要计算工具。多年来,已经开发了许多时间步长方法,其中许多现在可以在现成的解算器中使用。然而,即使在高精度的算法中,能量漂移和数值耗散问题仍然经常困扰着工程应用。几何时间积分器最近被证明对阐明和解决固体力学中的这些问题非常有用。然而,这些贡献并没有延续到欧拉环境中,在欧拉环境中,它们可能会影响计算流体力学时间积分器的理解和可靠性。因此,本研究项目的目标是为这类问题开发新颖的、基于几何的欧拉时间积分器,该问题的动力学由作用原理描述,可能包括耗散和强迫-它包括正则欧拉方程和纳维斯托克斯方程,以及许多其他模型。我们将探索哈密尔顿-庞特里亚金原理的欧拉离散化,并结合数学和数值工具,如离散外微积分、正双随机矩阵半群和隐函数。就像在拉格朗日环境中一样,最终的积分者应该尊重物理学的结构,即不引入诸如能量或循环等关键物理量的人为数值损失。拟议的研究活动旨在开发一个基础设施,用于预测和高阶精确地模拟流体-机械系统,将现代应用几何的力量与现代计算力学相结合。特别是,它承诺引入新的变分流体模拟算法:这种创新的计算方法依赖于多学科的努力,借鉴了几何力学、离散几何、数值分析和图形学的技术,从而有望产生广泛的理论和实践影响。从统一的几何角度开发这种变分积分器代表着我们解决复杂物理现象(如流动的衣服、游动的鱼或飞溅的水)的长期目标的垫脚石,对这些现象的模拟需要对当前技术状态进行相当大的改进才能变得司空见惯。在这个项目中获得的研究经验将通过在数学、工程和计算机科学期刊、书籍和会议上发表,以及在我们的网站上、暑期学校、讲习班和其他教育活动中传播给广泛的受众。我们三个机构的外联努力包括从代表性不足的群体中招募学生,以帮助这一研究项目,利用现有努力加强妇女和少数群体对科学研究的参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathieu Desbrun其他文献

High-Order Moment-Encoded Kinetic Simulation of Turbulent Flows
湍流的高阶矩编码动力学模拟
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wei Li;Tongtong Wang;Zherong Pan;Xifeng Gao;Kui Wu;Mathieu Desbrun
  • 通讯作者:
    Mathieu Desbrun

Mathieu Desbrun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathieu Desbrun', 18)}}的其他基金

EAGER: Collaborative Research: Towards Robust and Scalable Hexahedral Meshing
EAGER:协作研究:实现稳健且可扩展的六面体网格划分
  • 批准号:
    1655306
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AF: Large: Eulerian Computational Mechanics through Variational Principles
AF:大:通过变分原理的欧拉计算力学
  • 批准号:
    1011944
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CPA-G&V: Eigengeometry: Geometric Spectral Computing for Computer Graphics and Computational Science
合作研究:CPA-G
  • 批准号:
    0811373
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Compression of Geometry Datasets
合作研究:几何数据集的压缩
  • 批准号:
    0503788
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling and Processing of Topologically Complex 3D Shapes
合作研究:拓扑复杂 3D 形状的建模和处理
  • 批准号:
    0503787
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Fast, Predictive Modeling and Simulation in Computer Graphics: Theoretical and Computational Foundations
职业:计算机图形学中的快速预测建模和仿真:理论和计算基础
  • 批准号:
    0503786
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR - (ASE) - (sim): Discrete Differential Calculus (DDC)
ITR - (ASE) - (sim):离散微分微积分 (DDC)
  • 批准号:
    0453145
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Processing of Topologically Complex 3D Shapes
合作研究:拓扑复杂 3D 形状的建模和处理
  • 批准号:
    0221666
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Fast, Predictive Modeling and Simulation in Computer Graphics: Theoretical and Computational Foundations
职业:计算机图形学中的快速预测建模和仿真:理论和计算基础
  • 批准号:
    0133983
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Compression of Geometry Datasets
合作研究:几何数据集的压缩
  • 批准号:
    0221669
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
  • 批准号:
    2350374
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
  • 批准号:
    2350373
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    2409888
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246611
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223871
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
  • 批准号:
    2212130
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2211916
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223870
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了