Collaborative Research: Geometric Time Integrators for Mechanical Dynamical Systems
合作研究:机械动力系统的几何时间积分器
基本信息
- 批准号:0757123
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Time integrators are crucial computational tools for studying nonlinear dynamical systems. Numerous time stepping methods have been developed over the years, many of which are now available in off-the-shelf solvers. However energy drifts and numerical dissipation problems present even in highly accurate algorithms still routinely plague engineering applications. Geometric time integrators have been recently proven greatly useful to elucidate and fix these issues in solid mechanics. Yet these contributions have not carried over to the Eulerian setting, where they could impact both the understanding and the reliability of time integrators for computational fluid dynamics. The goal of this research project is thus to develop novel, geometrically-based Eulerian time integrators for the class of problems whose dynamics is described by an action principle, possibly including dissipation and forcing---which encompasses the canonical Euler and Navier-Stokes equations, as well as many other models. Eulerian discretizations of the Hamilton-Pontryagin principle will be explored, and combined with mathematical and numerical tools such as Discrete Exterior Calculus, the semigroup of positive doubly-stochastic matrices, and implicit functions. Resulting integrators are expected, just like in the Lagrangian setting, to respect the structure of the physics, i.e., to introduce no artificial numerical loss of crucial physical quantities such as energy or circulation.The proposed research activities aim at developing an infrastructure for predictive and high-order accurate simulations of fluid-mechanical systems that combine the power of modern applied geometry with modern computational mechanics. In particular, it promises the introduction of novel variational fluid simulation algorithms: this innovative computational approach relies on a multidisciplinary effort drawing upon techniques from geometric mechanics, discrete geometry, numerical analysis, and graphics, thus promising a broad theoretical and practical impact. The development of such variational integrators from a unified geometric standpoint represents a stepping stone for our long-term goal of solving complex physical phenomena such as a flowing dress, a swimming fish or splashing water, the simulation of which requires considerable improvement of the current state of the art to become commonplace. The research experience acquired during this project is to be disseminated to a wide range of audiences through publishing in mathematics, engineering and computer science journals, books, and conferences, as well as on our web sites, in summer schools, workshops, and other educational activities. Outreach efforts at our three institutions include the recruitment of students from underrepresented groups to help with this research project, leveraging existing efforts for enhancing the participation of women and minorities in scientific research.
时间积分器是研究非线性动力系统的重要计算工具。多年来,已经开发了许多时间步进方法,其中许多现在可以在现成的求解器中使用。然而,能量漂移和数值耗散的问题,即使在高精度的算法仍然经常困扰工程应用。几何时间积分器最近已被证明是非常有用的阐明和解决这些问题的固体力学。然而,这些贡献并没有结转到欧拉设置,在那里他们可能会影响的理解和计算流体动力学的时间积分的可靠性。因此,本研究项目的目标是开发新的,几何为基础的欧拉时间积分的一类问题,其动态描述的作用原理,可能包括耗散和强迫-其中包括规范欧拉和Navier-Stokes方程,以及许多其他模型。将探讨哈密顿-庞特里亚金原理的欧拉离散化,并结合数学和数值工具,如离散外部微积分,正双随机矩阵半群和隐函数。就像在拉格朗日设置中一样,期望所得积分器尊重物理结构,即,拟议的研究活动旨在开发一个基础设施,用于流体机械系统的预测和高阶精确模拟,将现代应用几何学的力量与现代计算力学联合收割机相结合。特别是,它承诺引入新的变分流体模拟算法:这种创新的计算方法依赖于多学科的努力,从几何力学,离散几何,数值分析和图形技术,从而有希望广泛的理论和实践的影响。这种变分积分器从统一的几何观点的发展代表了一个垫脚石,我们的长期目标,解决复杂的物理现象,如流动的衣服,游泳的鱼或飞溅的水,其模拟需要相当大的改进,目前的最先进的成为司空见惯。在这个项目中获得的研究经验将通过在数学,工程和计算机科学期刊,书籍和会议上发表,以及在我们的网站上,在暑期学校,研讨会和其他教育活动中传播给广泛的受众。我们三个机构的外联工作包括从代表性不足的群体中招募学生来帮助这一研究项目,利用现有的努力来加强妇女和少数民族对科学研究的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiying Tong其他文献
Implicit Laplacian of Enhanced Edge (ILEE): An unguided algorithm for accurate and automated quantitative analysis of cytoskeletal images
增强边缘隐式拉普拉斯算子 (ILEE):一种用于对细胞骨架图像进行准确和自动定量分析的无引导算法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Pai Li;Ze Zhang;Brad Day;Yiying Tong - 通讯作者:
Yiying Tong
Texture mapping subdivision surfaces with hard constraints
具有硬约束的纹理映射细分表面
- DOI:
10.1007/s00371-013-0794-4 - 发表时间:
2013-11 - 期刊:
- 影响因子:3.5
- 作者:
Yanlin Weng;Dongping Li;Yiying Tong - 通讯作者:
Yiying Tong
Angle-Based Representation of Triangulated Surfaces
三角曲面基于角度的表示
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ze Zhang;Xiaojun Wang;Yiying Tong - 通讯作者:
Yiying Tong
Compact combinatorial maps: A volume mesh data structure
紧凑组合图:体网格数据结构
- DOI:
10.1016/j.gmod.2012.10.001 - 发表时间:
2013-05 - 期刊:
- 影响因子:1.7
- 作者:
Xin Feng;Yuanzhen Wang;Yanlin Weng;Yiying Tong - 通讯作者:
Yiying Tong
Visual fluid animation via lifting wavelet transform
通过提升小波变换实现视觉流体动画
- DOI:
10.1002/cav.1574 - 发表时间:
2014-05 - 期刊:
- 影响因子:1.1
- 作者:
Shiguang Liu;Yixin Xu;Junyong Noh;Yiying Tong - 通讯作者:
Yiying Tong
Yiying Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiying Tong', 18)}}的其他基金
EAGER: Collaborative Research: Towards Robust and Scalable Hexahedral Meshing
EAGER:协作研究:实现稳健且可扩展的六面体网格划分
- 批准号:
1655422 - 财政年份:2016
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
CAREER: Theory and Practice of Space-Time Variational Integrators for Simulation and Animation
职业:用于仿真和动画的时空变分积分器的理论与实践
- 批准号:
0953096 - 财政年份:2010
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Collaborative Research: CPA-G&V: Eigengeometry: Geometric Spectral Computing for Computer Graphics and Computational Science
合作研究:CPA-G
- 批准号:
0811313 - 财政年份:2008
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350374 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350373 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
- 批准号:
2409888 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223871 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
- 批准号:
2212130 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2211916 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223870 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant














{{item.name}}会员




