Criticality: A Theory for Understanding and Forecasting Deep Convective Initiation

临界性:理解和预测深对流起始的理论

基本信息

  • 批准号:
    0757189
  • 负责人:
  • 金额:
    $ 18.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Intellectual Merit: Deep convection in the atmosphere involves the vertical transport of heat and moisture through a considerable fraction of the troposphere. It plays a significant role in regulating the water cycle and thus regional and local variations in the occurrence of deep convection can significantly impact how water resources are managed. Deep convection can also produce large hail, damaging winds, tornadoes, and flooding rains and can therefore pose a significant threat to health and safety. Improving forecasts of deep convection will enable better assessment and management of these threats and will also enable more effective management of local and regional water resources. Improving forecasts of the initiation of deep convection is essential to the overall improvement to forecasts of deep convection. However, consistently accurate predictions of deep convective initiation (DCI) can only be possible if there is an understanding of the fundamental regulating mechanisms. The first objective of the research is to advance the state of knowledge by solidifying the theory of criticality, a new conceptual paradigm for DCI that captures its fundamental regulating mechanisms. Criticality is a concept that was introduced in a recent article by the PI and uses the non-linear relationship between buoyancy and dilution to define two convective regimes: a supercritical regime in which DCI is likely and a subcritical regime in which DCI is unlikely. With criticality the probability of DCI is seen to depend not on the likelihood that parcels will become unstable but on the likelihood that parcels will become supercritical. Solidifying the concept of criticality will rely on a combination of numerical experiments conducted with a both a three dimensional (3D) cloud-resolving model and an idealized one dimensional (1D) model of criticality. Because criticality is defined by the relationship between buoyancy and dilution, the 3D experiments will focus on examining the sensitivity of DCI to both buoyancy and dilution. Experiments with the 1D criticality model are designed to isolate the role of criticality from the more complex dynamics and microphysics operating within a convective cloud. The 1D criticality model will be applied to the 3D simulations in an effort to determine the reliability of using criticality to discriminate between environments that do and do not yield DCI. The second objective of the research is to develop metrics for quantifying criticality. These metrics will enable the analysis planned to fulfill the first objective. They will also be instrumental in meeting the third objective of this work. The third objective is to determine how well criticality metrics in particular and criticality in general discriminate between observed environments that do and do not support DCI. Statistical analysis will serve to quantify how well various criticality metrics predict DCI. These results will then be compared to other metrics used for forecasting DCI. Broader Impacts: An improved understanding of deep convection is clearly important to society and improved forecasts of DCI will provide direct and immediate benefit. This work not only aims to improve understanding of DCI but, through the development and testing of criticality metrics, involves concrete steps that will enable the application of this work to the operational forecasting of DCI. This work will also enable the PI to solidify partnerships between the University of Nebraska and NOAA through the future collaborative development of an interactive tool for forecasting DCI. This work also aims to foster the integration of research and education by leading to the thesis/dissertation work of a graduate student. Results from the research will be disseminated to the scientific and operational forecasting communities through publication in peer-reviewed professional journals, presentations at professional meetings, and seminars at the host institution and elsewhere. Direct interaction with the operational forecasting community will also be sought so that these results can be expediently and effectively disseminated to operational forecasters.
智力优势:大气中的深层对流涉及热量和水分通过对流层相当大一部分的垂直输送。 它在调节水循环方面发挥着重要作用,因此深对流发生的区域和地方变化可以显著影响水资源的管理方式。 深层对流也会产生大冰雹、破坏性的风、龙卷风和洪水,因此会对健康和安全构成重大威胁。 改进对深层对流的预测将有助于更好地评估和管理这些威胁,也有助于更有效地管理地方和区域水资源。 改进深对流形成的预报是提高深对流预报水平的关键。然而,一致准确的预测深对流的启动(DCI)只有可能的,如果有一个基本的调节机制的理解。 研究的第一个目标是通过巩固临界理论来推进知识状态,临界理论是DCI的一个新的概念范式,它抓住了DCI的基本调节机制。 临界性是PI在最近的一篇文章中引入的一个概念,它使用浮力和稀释之间的非线性关系来定义两种对流状态:可能发生DCI的超临界状态和不可能发生DCI的亚临界状态。 在临界状态下,DCI的概率不取决于包裹变得不稳定的可能性,而是取决于包裹变得超临界的可能性。巩固临界性的概念将依赖于与三维(3D)云解析模型和理想化的一维(1D)临界性模型进行的数值实验的组合。由于临界性是由浮力和稀释度之间的关系定义的,因此3D实验将侧重于检查DCI对浮力和稀释度的敏感性。一维临界模型实验的目的是隔离的作用,从更复杂的动力学和微观物理学的对流云内运行的临界。1D关键性模型将应用于3D模拟,以确定使用关键性区分产生和不产生DCI的环境的可靠性。研究的第二个目标是制定量化关键性的指标。这些指标将使计划的分析能够实现第一个目标。它们还将有助于实现这项工作的第三个目标。第三个目标是确定关键性指标,特别是关键性一般区分观察到的环境,做和不支持DCI。 统计分析将用于量化各种关键性指标预测DCI的程度。 然后将这些结果与用于预测DCI的其他指标进行比较。更广泛的影响:加深对深对流的了解显然对社会很重要,改进DCI的预报将提供直接和直接的好处。 这项工作不仅旨在提高对DCI的理解,而且通过关键性指标的开发和测试,涉及将这项工作应用于DCI业务预测的具体步骤。 这项工作还将使PI能够通过未来合作开发预测DCI的交互式工具来巩固内布拉斯加大学和NOAA之间的伙伴关系。这项工作的目的还在于促进研究和教育的一体化,导致论文/论文工作的研究生。 研究结果将通过在同行评审的专业期刊上发表、在专业会议上介绍以及在主办机构和其他地方举办研讨会等方式传播给科学和业务预报界。 还将寻求与业务预报界的直接互动,以便将这些结果方便有效地传播给业务预报员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Houston其他文献

Adam Houston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Houston', 18)}}的其他基金

Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312994
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
AGS-FIRP Track 1: The 2023 University of Nebraska DOW (Doppler on Wheels) Education and Outreach (UNDEO-2023) Project
AGS-FIRP 第 1 轨道:2023 年内布拉斯加大学 DOW(车轮上的多普勒)教育和外展 (UNDEO-2023) 项目
  • 批准号:
    2239189
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Dispersed Autonomy for Marsupial Aerial Robot Teams
合作研究:NRI:有袋类空中机器人团队的分散自治
  • 批准号:
    2133142
  • 财政年份:
    2022
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Mesoscale Airmasses with High Theta-E (MAHTE)
合作研究:高 Theta-E 中尺度气团 (MAHTE)
  • 批准号:
    2113341
  • 财政年份:
    2021
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Targeted Observation by Radars and UAS (Unmanned Aircraft Systems) of Supercells (TORUS)
合作研究:雷达和 UAS(无人机系统)对超级细胞(TORUS)的定向观测
  • 批准号:
    1824649
  • 财政年份:
    2018
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Continuing Grant
NRI: Collaborative Research: Targeted Observation of Severe Local Storms Using Aerial Robots
NRI:合作研究:使用空中机器人对局部严重风暴进行有针对性的观测
  • 批准号:
    1527113
  • 财政年份:
    2016
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID--Integration of Unmanned Aircraft System (UAS) into the Program for Research on Elevated Convection with Intense Precipitation
合作研究:RAPID——将无人机系统(UAS)集成到强降水高对流研究计划中
  • 批准号:
    1542760
  • 财政年份:
    2015
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Development of Unmanned Aircraft System and Its Use in Investigating the Impact of Pre-Existing Airmass Boundaries on Supercell Rotation
无人机系统的开发及其在研究预先存在的气团边界对超级单体旋转的影响中的应用
  • 批准号:
    0800763
  • 财政年份:
    2009
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SGER--Unmanned Aircraft System for In-Situ Sensing Along Atmospheric Airmass Boundaries
合作研究:SGER--沿大气气团边界进行原位传感的无人机系统
  • 批准号:
    0715875
  • 财政年份:
    2007
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant

相似国自然基金

多源高精度图像成像和理解的理论与方法
  • 批准号:
    R24F030027
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
侵入式汉语言脑机接口理论与关键技术研究
  • 批准号:
    62336007
  • 批准年份:
    2023
  • 资助金额:
    229.00 万元
  • 项目类别:
    重点项目
面向复杂视觉场景理解的生成式通用感知模型理论与方法
  • 批准号:
    62376060
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于井中DAS的地质-地球物理解析理论与方法研究
  • 批准号:
    42230805
  • 批准年份:
    2022
  • 资助金额:
    271 万元
  • 项目类别:
    重点项目
知识驱动的复杂场景多模态语义理解理论与方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    285 万元
  • 项目类别:
    重点项目
恶劣天候下大规模复杂三维场景理解理论与方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    259 万元
  • 项目类别:
极端环境视觉流感知与理解理论及方法
  • 批准号:
    62132002
  • 批准年份:
    2021
  • 资助金额:
    299 万元
  • 项目类别:
    重点项目
复杂时空环境下视觉目标理解理论和方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    261 万元
  • 项目类别:
    联合基金项目
从频率原则理解深度学习
  • 批准号:
    62002221
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于多粒度特征学习的服务机器人环境自主感知与行为理解理论研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Going Beyond the Dyad: A Network Theory for Understanding the Challenges of Friendship
职业:超越二元:理解友谊挑战的网络理论
  • 批准号:
    2340942
  • 财政年份:
    2024
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304852
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Understanding and Controlling Oscillation Phenomena of Hall Thruster by Virtual Cathode Region Deformation Theory
用虚拟阴极区域变形理论理解和控制霍尔推进器振荡现象
  • 批准号:
    23H01599
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304854
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304853
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
MLTURB: A new understanding of turbulence via a machine-learnt dynamical systems theory
MLTURB:通过机器学习动力系统理论对湍流的新理解
  • 批准号:
    EP/Y004094/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Research Grant
Theory, Methods, and Resources for Understanding and Leveraging Spatial Variation in Population Genetic Data
理解和利用群体遗传数据空间变异的理论、方法和资源
  • 批准号:
    10623985
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
Understanding the Evolutionary Origins of Theory of Mind: Computational Modeling of Conserved Cognitive Mechanisms Across Primates
理解心理理论的进化起源:灵长类动物保守认知机制的计算模型
  • 批准号:
    2104589
  • 财政年份:
    2022
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Fellowship Award
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
  • 批准号:
    2137147
  • 财政年份:
    2022
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2022
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了