FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
基本信息
- 批准号:0757253
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two dimensional quantum field theory and string theory are mathematically very interesting but still not precisely defined. Two dimensional field theories are algebraic and analytic structures associated to geometric surfaces. String theories are averages or integrals of two dimensional field theories over all surface geometries. In this project we study various two dimensional field theories , their integrals and their common underlying structure. For example we will study a supersymmetric refinement of the Atiyah-Segal-Witten notion of 2D field theories with a nontrivial internal stucture related to modular forms. The point here is to construct examples and relate these ideas to the topological modular form cohomology theory. We will explore a new infinity categorical version of 2D field theory. There are many natural examples to investigate and categorifications of two dimensional theories relate to three dimensional topological quantum field theories. We intend to clarify the "string topology" two dimensional field theories associated to any "target manifold" . These theories feature a master equation solution, dX + X*X = 0, required to form the analogue of the string theory integral. The algebraic formalism resonates with the J holomorphic curves of symplectic topology. More generally, we will research the conceptual meaning of solutions to master equations, deformations of structures with duality, and the formalism related to multilinear functions or operations called correlators. The different parts of science and mathematics are woven together in a rich tapestry and this phenomenon is well illustrated by the above. The studies of this project will impact a wide range of younger researchers in the universities as well as PhD students and undergraduates. Other impacts might eventually include improved technology. Practical applications by scientists are sometimes accidental like penicillin and synthetic rubber. Sometimes however, like the discovery of transistors and microelectronics, they depend on a deep understanding of subjects like quantum theory. A very speculative application of a deeper understanding of two dimensional quantum field theory, the subject of this project, could be to the physical realization of quantum computers. One knows quantum computers can theoretically solve problems not known to be solved theoretically by non quantum computing systems. One such problem is the theoretical possibility of cracking the factorization part of the security systems used by financial systems and government agencies. The technical difficulties to realizing quantum computers can be recast according to Michael Freedman, using the three dimensional topological theories alluded to above. Furthermore the relationship of these three dimensional theories with two dimensional theories suggests a direction to look to solve the technical difficulties: the experimental physics that takes place in two dimensions, the very active area of condensed matter research. There is an opportunity just now to organize these different perspectives and energies of the participants of the project into a coherent campaign to illuminate the area. The circle of ideas from two dimensional field theory, string theory, and deformations of structures with duality may very well become an important organizing center for twenty first century mathematics in the way that topology influenced the twentieth century.
二维量子;场理论和弦理论在数学上非常有趣,但仍然没有精确定义。二维&;#64257;场理论是与几何曲面相关的代数和解析结构。弦理论是二维的平均或积分。适用于所有表面几何形状的场理论。在这个项目中,我们研究了各种二维场论,它们的积分和它们共同的底层结构。例如,我们将研究超对称重构。2D的Atiyah-Segal-Witten概念的修正&;#64257;具有与模形式相关的非平凡内部结构的场理论。这里的重点是构造例子,并将这些思想与拓扑模形式上同调理论联系起来。我们将探索一个新的领域&;#64257;2D fi;古人的理论。研究二维理论的范畴与三维拓扑量子场论有许多自然的例子。我们打算澄清“字符串拓扑”的二维&;#64257;与任何“目标流形”相关的Eld理论。这些理论的特点是有一个主方程解,dX + X*X = 0,需要形成弦理论积分的模拟。这种代数形式与辛拓扑的J全纯曲线有共鸣。更一般地说,我们将研究掌握方程的解的概念意义,对偶结构的变形,以及与多线性函数或称为相关器的操作相关的形式化。科学和数学的不同部分交织在一块丰富的挂毯中,上面的例子很好地说明了这一现象。该项目的研究将影响广泛的大学年轻研究人员以及博士生和本科生。其他影响最终可能包括技术的改进。科学家的实际应用有时是偶然的,就像青霉素和合成橡胶一样。然而,有时,就像晶体管和微电子学的发现一样,它们依赖于对量子理论等学科的深刻理解。一个非常投机的应用,更深入地了解二维量子场论,这个项目的主题,可能是量子计算机的物理实现。人们知道量子计算机理论上可以解决非量子计算系统理论上无法解决的问题。其中一个问题是,理论上有可能破解金融系统和政府机构使用的安全系统的分解部分。实现量子计算机的技术困难可以根据迈克尔·弗里德曼(Michael Freedman)使用上面提到的三维拓扑理论来重新定义。此外,这些三维理论与二维理论的关系为解决技术难题提供了一个方向:在二维中进行的实验物理,凝聚态研究的非常活跃的领域。现在有机会将项目参与者的这些不同观点和能量组织成一个连贯的运动,以照亮该地区。二维空间的思想循环&;#64257;场理论、弦理论和对偶结构的变形很可能成为20年的重要组织中心。RST世纪数学中的拓扑学结束了二十世纪。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Stolz其他文献
Involutions on spheres and Mahowald's root invariant
- DOI:
10.1007/bf01449218 - 发表时间:
1988-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Stephan Stolz - 通讯作者:
Stephan Stolz
Exotic structures on 4-manifolds detected by spectral invariants
- DOI:
10.1007/bf01394348 - 发表时间:
1988-02-01 - 期刊:
- 影响因子:3.600
- 作者:
Stephan Stolz - 通讯作者:
Stephan Stolz
Topology, Geometry and Quantum Field Theory: What is an elliptic object?
拓扑、几何和量子场论:什么是椭圆形物体?
- DOI:
10.1017/cbo9780511526398.013 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
P. Teichner;Stephan Stolz - 通讯作者:
Stephan Stolz
Stephan Stolz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Stolz', 18)}}的其他基金
Mathematical Sciences: Curvature and Topology
数学科学:曲率和拓扑
- 批准号:
9504418 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Curvature and Topology
数学科学:曲率和拓扑
- 批准号:
9208073 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Classification Problems in Geometric Topology
数学科学:几何拓扑分类问题
- 批准号:
9002594 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Classification Problems in Geometric Topology
数学科学:几何拓扑分类问题
- 批准号:
8802481 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant