FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation
FRG:合作研究:量子自旋系统。
基本信息
- 批准号:0757424
- 负责人:
- 金额:$ 25.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the work of a group of seven researchers, Sergey Bravyi, Matthew Hastings, Bruno Nachtergaele, Robert Sims, Shannon Starr, Barbara Terhal, and Horng-Tzer Yau, on three clusters of problems in the mathematical theory of quantum spin systems. The first cluster, locality and Lieb-Robinson bounds, spin diffusion, and large-spin asymptotics, is aimed at improving understanding of quantum lattice dynamics. The second cluster focuses on ground state properties: area laws for the local entropy and entanglement, the spectral gap above the ground state and its relation with the behavior of correlation functions, and the quality of approximation of ground states by matrix product states. The third cluster contains a number of questions in computational complexity theory: computational complexity classes, QMA-completeness, the connection between gapped Hamiltonians and complexity, and the computational power of stoquastic Hamiltonians, all of which relate to quantum spin systems.Condensed matter physicists, mathematical physicists, functional analysts, workers in quantum computation, and computer scientists recently have begun to discover the close relationships that exist between several of the important questions in their respective fields. A small number of key properties about quantum spin Hamiltonians, the dynamics they generate, and their ground states are the main ingredients needed to address questions about the physical behavior of quantum spin models, about the computational efficiency of numerical algorithms to compute ground state properties and simulate dynamics, and about new complexity classes that are emerging in the theory of quantum computation. This project brings together experts in condensed matter physics, functional analysis and spectral theory, probability theory, and computer science to develop a coherent mathematical theory that clarifies the interrelationships of these key properties and, in particular, their relevance for the emerging field of quantum complexity theory in the context of quantum computation.
该奖项支持七名研究人员(Sergey Bravyi、Matthew Hastings、Bruno Nachtergaele、Robert Sims、Shannon Starr、Barbara Terhal 和 Horng-Tzer Yau)在量子自旋系统数学理论中三组问题上的工作。 第一个簇、局域性和李布-罗宾逊界、自旋扩散和大自旋渐进,旨在增进对量子晶格动力学的理解。 第二类集中于基态特性:局部熵和纠缠的面积定律、基态之上的谱间隙及其与相关函数行为的关系,以及矩阵乘积态近似基态的质量。 第三组包含计算复杂性理论中的许多问题:计算复杂性类别、QMA 完整性、有隙哈密顿量与复杂性之间的联系以及随机哈密顿量的计算能力,所有这些都与量子自旋系统有关。凝聚态物理学家、数学物理学家、泛函分析师、量子计算工作者和计算机科学家最近已经开始发现几个问题之间存在的密切关系。 各自领域的重要问题。 关于量子自旋哈密顿量的少数关键属性、它们产生的动力学及其基态是解决有关量子自旋模型的物理行为、计算基态属性和模拟动力学的数值算法的计算效率以及量子计算理论中出现的新复杂性类别等问题所需的主要成分。 该项目汇集了凝聚态物理学、泛函分析和谱理论、概率论和计算机科学方面的专家,开发了一种连贯的数学理论,阐明了这些关键属性的相互关系,特别是它们与量子计算背景下新兴的量子复杂性理论领域的相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Sims其他文献
Zero-parameter extension of general relativity with a varying cosmological constant
具有变化的宇宙学常数的广义相对论的零参数扩展
- DOI:
10.1103/physrevd.100.083506 - 发表时间:
2019 - 期刊:
- 影响因子:5
- 作者:
S. Alexander;Marina Cortês;A. Liddle;J. Magueijo;Robert Sims;L. Smolin - 通讯作者:
L. Smolin
Much Ado About Something: Why Lieb-Robinson bounds are useful
无事生非:为什么 Lieb-Robinson 界限很有用
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
B. Nachtergaele;Robert Sims - 通讯作者:
Robert Sims
Lyapunov Exponents in Continuum Bernoulli-Anderson Models
连续伯努利-安德森模型中的李雅普诺夫指数
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
D. Damanik;Robert Sims;G. Stolz - 通讯作者:
G. Stolz
Theoretical and Observational Windows into the Dark Sector
进入黑暗领域的理论和观察窗口
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Robert Sims - 通讯作者:
Robert Sims
ON THE EXISTENCE OF THE DYNAMICS FOR ANHARMONIC QUANTUM OSCILLATOR SYSTEMS
关于非谐量子振荡器系统动力学的存在性
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
B. Nachtergaele;B. Schlein;Robert Sims;S. Starr;V. Zagrebnov - 通讯作者:
V. Zagrebnov
Robert Sims的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Sims', 18)}}的其他基金
Arizona School of Analysis and Mathematical Physics
亚利桑那州分析与数学物理学院
- 批准号:
1800724 - 财政年份:2018
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
Arizona School of Analysis and Mathematical Physics
亚利桑那州分析与数学物理学院
- 批准号:
1162637 - 财政年份:2012
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
On locality and randomness in non-relativistic systems
非相对论系统中的局域性和随机性
- 批准号:
1101345 - 财政年份:2011
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant
Arizona School of Analysis with Applications
亚利桑那分析学院及其应用
- 批准号:
1001153 - 财政年份:2010
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant