CAREER: Measurement and Predictive Dynamics of Meso-scale Milling

职业:细观铣削的测量和预测动力学

基本信息

  • 批准号:
    0757776
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-31 至 2010-04-30
  • 项目状态:
    已结题

项目摘要

The research objective of this Faculty Early Career Development (CAREER) Program project is to develop analysis and sensing methods for conventional to miniature milling dynamics; these developments will enable Smart Machine Tools that account for the effects of vibration. Current methods for predicting the dynamic behavior of the milling process are limited because they do not provide combined stability and accuracy information. Therefore, the selection of machining parameters is commonly based upon limited information or experience. The result is unnecessary part errors that are created from tool vibrations. These errors are a limiting factor when producing precision components (e.g. thin wall structures and miniature components). Tool vibrations impose severe limitations on industrial capability: 1) reduced accuracy; 2) a poor surface finish; and 3) increased costs which are linked to instability. Although research studies target these limitations for conventional size tools, the differences and role of dynamics at miniature levels has remained virtually unstudied. Dynamical system analysis and modeling efforts provide the crucial first steps for integrating control strategies into smart machines.If successful, this research will advance industrial capability for conventional to miniature machining applications, develop new capabilities for monitoring rotating shaft motions, and provide advances in miniature part production (e.g. small medical devices and MEMS). Outreach and recruiting efforts focus on K-12 students and undergraduate students, particularly from traditionally underrepresented groups, through: 1) developing a "So you want to be an engineer?" outreach program with a hands-on children's learning museum; 2) two existing UF outreach programs. Furthermore, this research develops tools that enhance the infrastructure for future research and seeks to enable the industrial application of miniature machining dynamics.
该学院早期职业发展(CAREER)计划项目的研究目标是开发传统到微型铣削动力学的分析和传感方法;这些发展将使智能机床能够考虑振动的影响。当前用于预测铣削过程的动态行为的方法是有限的,因为它们不提供组合的稳定性和准确性信息。 因此,加工参数的选择通常基于有限的信息或经验。 结果是由刀具振动产生的不必要的零件误差。 这些误差是生产精密部件(例如薄壁结构和微型部件)时的限制因素。工具振动对工业能力造成严重限制:1)精度降低; 2)表面光洁度差;以及3)与不稳定性相关的成本增加。 虽然研究针对传统尺寸工具的这些限制,但在微型水平上的动力学差异和作用实际上仍未得到研究。 动态系统分析和建模工作为将控制策略集成到智能机器中提供了关键的第一步。如果成功,这项研究将提高传统到微型加工应用的工业能力,开发监控旋转轴运动的新功能,并促进微型零件生产(例如小型医疗设备和MEMS)。 外联和招聘工作的重点是K-12学生和本科生,特别是来自传统上代表性不足的群体,通过:1)制定一个“所以你想成为一名工程师?“外展计划与动手儿童学习博物馆; 2)两个现有的用友外展计划。 此外,这项研究开发的工具,加强基础设施,为未来的研究,并寻求使微型加工动力学的工业应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Mann其他文献

Automating neurosurgical tumor resection surgery: Volumetric laser ablation of cadaveric porcine brain with integrated surface mapping
自动化神经外科肿瘤切除手术:利用集成表面测绘对尸体猪脑进行体积激光消融
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Weston A. Ross;Westin M. Hill;K. Hoang;A. Laarakker;Brian Mann;P. Codd
  • 通讯作者:
    P. Codd

Brian Mann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Mann', 18)}}的其他基金

NRT-FW-HTF: NSF Traineeship in the Advancement of Surgical Technologies
NRT-FW-HTF:NSF 外科技术进步培训
  • 批准号:
    2125528
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamical Systems Diagnostics for Intelligent Machine Tools
智能机床动态系统诊断
  • 批准号:
    2053470
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Tailoring Energy Flow in Magnetic Oscillator Arrays
合作研究:定制磁振荡器阵列中的能量流
  • 批准号:
    1300307
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Proposal: Stability, Identification, and Stochastic Resonnance in Stochastic Delay Systems
合作提案:随机延迟系统中的稳定性、辨识和随机共振
  • 批准号:
    0900266
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Fundamental Nonlinear Investigations of Dynamic Nanoindentation
GOALI:动态纳米压痕的基本非线性研究
  • 批准号:
    0829264
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Fundamental Nonlinear Investigations of Dynamic Nanoindentation
GOALI:动态纳米压痕的基本非线性研究
  • 批准号:
    0556150
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Measurement and Predictive Dynamics of Meso-scale Milling
职业:细观铣削的测量和预测动力学
  • 批准号:
    0542418
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Measurement and Predictive Dynamics of Meso-scale Milling
职业:细观铣削的测量和预测动力学
  • 批准号:
    0348288
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Application of predictive biomarkers of sugars and animal protein intake for investigation of dietary measurement error and its effect on diet-disease associations
应用糖和动物蛋白摄入量的预测生物标志物研究饮食测量误差及其对饮食与疾病关联的影响
  • 批准号:
    10522649
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Application of predictive biomarkers of sugars and animal protein intake for investigation of dietary measurement error and its effect on diet-disease associations
应用糖和动物蛋白摄入量的预测生物标志物研究饮食测量误差及其对饮食与疾病关联的影响
  • 批准号:
    10881492
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Application of predictive biomarkers of sugars and animal protein intake for investigation of dietary measurement error and its effect on diet-disease associations
应用糖和动物蛋白摄入量的预测生物标志物研究饮食测量误差及其对饮食与疾病关联的影响
  • 批准号:
    10705720
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Building predictive models of joint loading using integrated motion capture and inertial measurement technologies.
使用集成运动捕捉和惯性测量技术构建关节载荷的预测模型。
  • 批准号:
    RTI-2019-00169
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
Study on Generalization of Long-Range High-Accuracy Measurement Methods for Detecting Predictive Landslide Disasters
滑坡灾害远距离高精度测量方法推广研究
  • 批准号:
    17K06459
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Predictive diagnosis of endometriosis-associated malignant transformation by iron concentration measurement using magnetic resonance spectroscopic imaging.
使用磁共振波谱成像测量铁浓度来预测诊断子宫内膜异位症相关的恶性转化。
  • 批准号:
    16K11150
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of predictive maintenance scheme for fatigue cracks based on dissipated energy measurement
基于耗散能量测量的疲劳裂纹预测维护方案开发
  • 批准号:
    26289009
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated Measurement and Predictive Modeling of Adsorbate Coverage and Compositional Effects on Catalytic Activity
合作研究:吸附物覆盖率和催化活性的成分影响的综合测量和预测模型
  • 批准号:
    1264798
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Measurement and Predictive Modeling of Adsorbate Coverage and Compositional Effects on Catalytic Activity
合作研究:吸附物覆盖率和催化活性的成分影响的综合测量和预测模型
  • 批准号:
    1264963
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Predictive algorithm development for positional error estimation and correction based on multiple inertial measurement units
基于多个惯性测量单元的位置误差估计和校正的预测算法开发
  • 批准号:
    430585-2012
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了