Dynamical Systems Diagnostics for Intelligent Machine Tools

智能机床动态系统诊断

基本信息

  • 批准号:
    2053470
  • 负责人:
  • 金额:
    $ 35.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This grant will support research that will contribute to new knowledge related to a manufacturing process, promoting both the progress of science and advancing national prosperity. Subtractive manufacturing processes make three-dimensional parts and objects by removing material in small layers. Machining is one of the more pervasive subtractive processes and includes material removal methods known as milling, drilling, broaching, and turning. Each of these machining processes uses a cutting tool to remove material layers from a bulk material and to leave behind a desired three-dimensional part. These material removal processes are also one of the most widely used approaches to create metal, wood, and plastic parts for the automotive, aerospace, medical device industries. However, the accuracy, surface quality, and productivity of all machining processes are limited by the vibrations caused in the cutting process. Although recent advances have unveiled the fundamentals physics behind these barriers for machining processes, there still exist a large gap between what is possible in the best academic lab and in a production setting. This project seeks to develop diagnostic tools that will enable manufacturers to take advantage of the latest academic knowledge for vibration problems, such as stability limitations, surface finish, and surface location error. Therefore, the results of this grant will benefit the U.S. economy and society. This research involves and impacts several disciplines which include dynamical systems and control, manufacturing, machine learning, and data science. It is expected that this research, along with the complementary educational efforts, will help train the future workforce and broaden the participation of underrepresented groups in STEM disciplines. Tool vibrations impose severe limitations on industrial capability, such as reduced accuracy, a poor surface finish, and increased costs which are linked to instability. Although past research has uncovered the fundamental mechanism that leads to instability, it is still nearly impossible for the U.S. industrial base to apply this knowledge due to the need for repetitive, costly, and manually intensive modal tests and separate cutting force tests. This research will develop two data-driven approaches that will enable the U.S. industrial base to integrate machining dynamics with modern cyber-infrastructure. More specifically, the first research objective develops a new approach to automate the identification of the physical parameters required by predictive machining dynamics models and analysis tools. This will enable modern cyber infrastructure to optimize cutting process parameters and thus allow better decision to be made that now include the limitations imposed by vibrations. The second research objective develops a data-driven approach to discover the governing equations of systems that include time delays. It is expected that this framework will provide a more comprehensive understanding of the important physical mechanisms to include in machining dynamics models; this method could also generate models that modern cyber infrastructure could use to obtain optimal cutting process parameters or monitor the cutting process to diagnose problems from model parameter changes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金将支持有助于与制造过程相关的新知识的研究,促进科学进步和国家繁荣。 减法制造工艺通过去除小层材料来制造三维零件和物体。 机械加工是一种更普遍的减材工艺,包括被称为铣削、钻孔、拉削和车削的材料去除方法。 这些机械加工过程中的每一个都使用切削工具从块状材料中去除材料层并留下所需的三维部件。 这些材料去除工艺也是为汽车、航空航天、医疗器械行业制造金属、木材和塑料零件的最广泛使用的方法之一。 然而,所有加工过程的精度、表面质量和生产率都受到切削过程中产生的振动的限制。 虽然最近的进展已经揭示了这些加工工艺障碍背后的基本物理原理,但在最好的学术实验室和生产环境之间仍然存在很大的差距。 该项目旨在开发诊断工具,使制造商能够利用最新的学术知识来解决振动问题,例如稳定性限制,表面光洁度和表面位置误差。因此,这笔赠款的结果将有利于美国的经济和社会。 这项研究涉及并影响多个学科,包括动力系统和控制,制造,机器学习和数据科学。预计这项研究,沿着补充教育工作,将有助于培训未来的劳动力,并扩大代表性不足的群体在STEM学科的参与。 工具振动对工业能力造成严重限制,例如精度降低、表面光洁度差以及与不稳定性相关的成本增加。尽管过去的研究已经揭示了导致不稳定的基本机制,但由于需要重复、昂贵和手动密集的模态测试和单独的切削力测试,美国工业基地几乎不可能应用这些知识。 这项研究将开发两种数据驱动的方法,使美国工业基地能够将加工动态与现代网络基础设施相结合。 更具体地说,第一个研究目标开发了一种新的方法来自动识别预测加工动力学模型和分析工具所需的物理参数。 这将使现代网络基础设施能够优化切割工艺参数,从而能够做出更好的决策,包括振动带来的限制。 第二个研究目标是开发一种数据驱动的方法来发现包含时滞的系统的控制方程。 预计该框架将提供一个更全面的理解的重要物理机制,包括在加工动力学模型;这种方法还可以生成模型,现代赛博基础设施可以使用这些模型来获得最佳的切割过程参数,或者监控切割过程,以便根据模型参数的变化来诊断问题。这项奖励反映了美国国家科学基金会的法定使命,并且通过评估,被认为是值得支持的使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transfer Learning for Autonomous Chatter Detection in Machining
  • DOI:
    10.1016/j.jmapro.2022.05.037
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Melih C. Yesilli;Firas A. Khasawneh;B. Mann
  • 通讯作者:
    Melih C. Yesilli;Firas A. Khasawneh;B. Mann
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Mann其他文献

Automating neurosurgical tumor resection surgery: Volumetric laser ablation of cadaveric porcine brain with integrated surface mapping
自动化神经外科肿瘤切除手术:利用集成表面测绘对尸体猪脑进行体积激光消融
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Weston A. Ross;Westin M. Hill;K. Hoang;A. Laarakker;Brian Mann;P. Codd
  • 通讯作者:
    P. Codd

Brian Mann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Mann', 18)}}的其他基金

NRT-FW-HTF: NSF Traineeship in the Advancement of Surgical Technologies
NRT-FW-HTF:NSF 外科技术进步培训
  • 批准号:
    2125528
  • 财政年份:
    2021
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Tailoring Energy Flow in Magnetic Oscillator Arrays
合作研究:定制磁振荡器阵列中的能量流
  • 批准号:
    1300307
  • 财政年份:
    2013
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Stability, Identification, and Stochastic Resonnance in Stochastic Delay Systems
合作提案:随机延迟系统中的稳定性、辨识和随机共振
  • 批准号:
    0900266
  • 财政年份:
    2009
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
GOALI: Fundamental Nonlinear Investigations of Dynamic Nanoindentation
GOALI:动态纳米压痕的基本非线性研究
  • 批准号:
    0829264
  • 财政年份:
    2007
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
CAREER: Measurement and Predictive Dynamics of Meso-scale Milling
职业:细观铣削的测量和预测动力学
  • 批准号:
    0757776
  • 财政年份:
    2007
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
GOALI: Fundamental Nonlinear Investigations of Dynamic Nanoindentation
GOALI:动态纳米压痕的基本非线性研究
  • 批准号:
    0556150
  • 财政年份:
    2006
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
CAREER: Measurement and Predictive Dynamics of Meso-scale Milling
职业:细观铣削的测量和预测动力学
  • 批准号:
    0542418
  • 财政年份:
    2005
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
CAREER: Measurement and Predictive Dynamics of Meso-scale Milling
职业:细观铣削的测量和预测动力学
  • 批准号:
    0348288
  • 财政年份:
    2004
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

SBIR Phase I: Advanced microfluidic systems enabling development of novel circulating tumor cell diagnostics
SBIR 第一阶段:先进的微流体系统能够开发新型循环肿瘤细胞诊断
  • 批准号:
    2234009
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
Advanced Machine Learning Techniques for Fault Diagnostics and Prognostics: From Modern Complex Manufacturing Systems to Healthcare
用于故障诊断和预测的先进机器学习技术:从现代复杂制造系统到医疗保健
  • 批准号:
    RGPIN-2019-06966
  • 财政年份:
    2022
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of mammalian cell expression systems for the production of essential low cost protein reagents for development of rapid diagnostics
建立哺乳动物细胞表达系统,用于生产用于快速诊断开发的必需的低成本蛋白质试剂
  • 批准号:
    75128
  • 财政年份:
    2021
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Study
Low-cost Compact Radar Systems for Detection, Monitoring and Diagnostics
用于检测、监控和诊断的低成本紧凑型雷达系统
  • 批准号:
    RGPIN-2017-06058
  • 财政年份:
    2021
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Machine Learning Techniques for Fault Diagnostics and Prognostics: From Modern Complex Manufacturing Systems to Healthcare
用于故障诊断和预测的先进机器学习技术:从现代复杂制造系统到医疗保健
  • 批准号:
    RGPIN-2019-06966
  • 财政年份:
    2021
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Discovery Grants Program - Individual
Data Analytics and Learning Based Industrial Diagnostics and Monitoring Systems
基于数据分析和学习的工业诊断和监控系统
  • 批准号:
    543899-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Collaborative Research and Development Grants
Low-cost Compact Radar Systems for Detection, Monitoring and Diagnostics
用于检测、监控和诊断的低成本紧凑型雷达系统
  • 批准号:
    RGPIN-2017-06058
  • 财政年份:
    2020
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid high-throughput sample preparation for COVID-19 diagnostics using integrated automation systems
使用集成自动化系统快速制备用于 COVID-19 诊断的高通量样品
  • 批准号:
    550469-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Alliance Grants
Data Analytics and Learning Based Industrial Diagnostics and Monitoring Systems
基于数据分析和学习的工业诊断和监控系统
  • 批准号:
    543899-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Machine Learning Techniques for Fault Diagnostics and Prognostics: From Modern Complex Manufacturing Systems to Healthcare
用于故障诊断和预测的先进机器学习技术:从现代复杂制造系统到医疗保健
  • 批准号:
    RGPIN-2019-06966
  • 财政年份:
    2020
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了