Workshops for Probabilistic Methods in Mathematical Physics

数学物理概率方法研讨会

基本信息

  • 批准号:
    0757940
  • 负责人:
  • 金额:
    $ 1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

This is a proposal for supplementary funding for 4 workshops of the 2008-9 thematic year program of Probabilistic Methods in Mathematical Physics at the CRM (Centre de Recherches Mathematiques), on central topics in mathematical physics which are closely connected to probability theory. The requested funding is to pay the travel and hotel expenses of 10 younger participants at a U.S. university without an NSF grant for each of the four workshops. The workshops are coordinated and some younger participants will be invited to more than one workshop. In total, we are applying for funding to support 40 younger participants. Probablilistic methods have long been central in physics and mathematics, and their significance has only increased in recent years. The development of the Schramm-Loewner evolution and its applications by Lawler, Schramm, Smirnov, Werner and others in statistical mechanics is one important example. Another is the recent work of Okounkov, Nekrasov, Kenyon and others on the use of random partitions to determine partition functions of models in gauge theory. Yet another are applications of random fields by Bousso-Polchinski, Douglas and others to landscape statistics in string/M theory. The time is ripe for a year long review of the probabalistic methods and their applications through a series ofcoordinated workshops and lecture series. Broader Impact. The program is by nature inter-discipinary, and the workshops are designed to bring together mathematicians and physicists working on closely related (or identical problems) but from differing research traditions. The cross-fertilization from this kind of interaction has already had an enormous impact on contemporary mathematics. Many contemporary physicists have in return been highly influenced by the mathematical developments. In addition to the impact on established researchers, the program will bring in many graduate students, post-docs and other young researches and will expose a new generation to this important field.
这是一项为2008- 2009年CRM(Centre de Recherches Mathematiques)数学物理中概率方法主题年计划的4个研讨会提供补充资金的提案,这些研讨会涉及与概率论密切相关的数学物理中心主题。所要求的资金是支付10名年轻参与者在美国大学的旅行和酒店费用,而没有为四个研讨会中的每一个提供NSF资助。这些讲习班得到协调,一些较年轻的参与者将被邀请参加不止一个讲习班。我们总共申请资助40名年轻参与者。概率论方法长期以来一直是物理学和数学的核心,其重要性近年来才有所增加。Schramm-Loewner演化的发展以及Lawler、Schramm、Smirnov、Werner等人在统计力学中的应用就是一个重要的例子。另一个例子是Okounkov、Nekrasov、Kenyon和其他人最近的工作,他们使用随机分区来确定规范理论中模型的分区函数。另一个例子是布索-波尔钦斯基、道格拉斯等人将随机场应用于弦/M理论中的景观统计。时机已经成熟,可以通过一系列协调的研讨会和系列讲座,对概率方法及其应用进行为期一年的审查。更广泛的影响。该计划本质上是跨学科的,研讨会旨在将数学家和物理学家聚集在一起,研究密切相关(或相同的问题),但来自不同的研究传统。这种相互作用所产生的相互影响已经对当代数学产生了巨大的影响。许多当代物理学家也受到了数学发展的高度影响。除了对现有研究人员的影响外,该计划还将带来许多研究生,博士后和其他年轻的研究人员,并将使新一代人接触到这一重要领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Zelditch其他文献

Interface asymptotics of partial Bergman kernels on $S^1$-symmetric Kaehler manifolds
$S^1$-对称 Kaehler 流形上部分 Bergman 核的界面渐近
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steve Zelditch;Peng Zhou
  • 通讯作者:
    Peng Zhou
Interface asymptotics of Wigner—Weyl distributions for the Harmonic Oscillator
  • DOI:
    10.1007/s11854-022-0209-4
  • 发表时间:
    2022-07-11
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Boris Hanin;Steve Zelditch
  • 通讯作者:
    Steve Zelditch
Spacing Between Phase Shifts in a Simple¶Scattering Problem
Scaling of Harmonic Oscillator Eigenfunctions and Their Nodal Sets Around the Caustic
  • DOI:
    10.1007/s00220-016-2807-4
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Boris Hanin;Steve Zelditch;Peng Zhou
  • 通讯作者:
    Peng Zhou
Random polynomials with prescribed Newton polytope, I
具有指定牛顿多面体的随机多项式,I
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Shiffman;Steve Zelditch
  • 通讯作者:
    Steve Zelditch

Steve Zelditch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Zelditch', 18)}}的其他基金

Program on Large-N Limit Problems in Kähler Geometry
凯勒几何中大 N 极限问题的程序
  • 批准号:
    1541126
  • 财政年份:
    2015
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Global Harmonic Analysis
全局谐波分析
  • 批准号:
    1506591
  • 财政年份:
    2015
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Global harmonic analysis and quantum dynamics
全局调和分析和量子动力学
  • 批准号:
    1206527
  • 财政年份:
    2012
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Global Harmonic Analysis and Asymptotic Geometry
全局调和分析和渐近几何
  • 批准号:
    1058342
  • 财政年份:
    2010
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Workshops for Probabilistic Methods in Mathematical Physics
数学物理概率方法研讨会
  • 批准号:
    0855508
  • 财政年份:
    2009
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Global Harmonic Analysis and Asymptotic Geometry
全局调和分析和渐近几何
  • 批准号:
    0904252
  • 财政年份:
    2009
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Global harmonic analysis and asymptotic geometry
全局调和分析和渐近几何
  • 批准号:
    0603850
  • 财政年份:
    2006
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Conference on Asymptotic and Effective Results in Complex Geometry
复杂几何渐近有效结果会议
  • 批准号:
    0326849
  • 财政年份:
    2004
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Asymptotic Geometry of Eigenfunctions and Polynomials
本征函数和多项式的渐近几何
  • 批准号:
    0302518
  • 财政年份:
    2003
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
L-Functions and Automorphic Forms Conference, May 16 - 19, 2002, The Johns Hopkins University
L-函数和自同构会议,2002 年 5 月 16 - 19 日,约翰·霍普金斯大学
  • 批准号:
    0206637
  • 财政年份:
    2002
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant

相似海外基金

Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
  • 批准号:
    2246484
  • 财政年份:
    2023
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Probabilistic methods towards understanding complex human phenotypes using genomic and healthcare data
使用基因组和医疗数据理解复杂人类表型的概率方法
  • 批准号:
    RGPIN-2019-06216
  • 财政年份:
    2022
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Grants Program - Individual
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2022
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2139735
  • 财政年份:
    2022
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Probabilistic methods in KPZ universality and stochastic optimisation
KPZ 普适性和随机优化中的概率方法
  • 批准号:
    RGPIN-2020-06063
  • 财政年份:
    2022
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    DGECR-2022-00431
  • 财政年份:
    2022
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    RGPIN-2022-02961
  • 财政年份:
    2022
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2140057
  • 财政年份:
    2022
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2021
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the shape of Triton's atmosphere using photometric light curves from satellite constellations and probabilistic estimation methods
使用卫星星座的光度曲线和概率估计方法对海卫一的大气形状进行建模
  • 批准号:
    532704-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了