Differential Equation Weekends
微分方程周末
基本信息
- 批准号:0801164
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for meetings, held at the University of Memphis and at Mississippi State University, on current research topics in differential equations. The meetings are part of the successful, well-attended regional Differential Equations Weekends series. The conferences encourage and financially support participation by students and recent Ph.D. recipients.The meetings include plenary lectures on topics of current research interest but strongly encourage lectures by students and recent Ph.D. recipients. The conferences bring together workers in a variety of different areas of research in differential equations, with emphasis on providing opportunities for new researchers to present their work. The conferences will be especially beneficial to young researchers, including graduate students and postdocs. Conference web site: http://www.msci.memphis.edu/confsymp.html
该奖项为在孟菲斯大学和密西西比州立大学举行的关于微分方程当前研究主题的会议提供支持。 这些会议是成功举办、参加人数众多的区域微分方程周末系列活动的一部分。 这些会议鼓励并在财政上支持学生和最近的博士生的参与。会议包括关于当前研究兴趣主题的全体讲座,但强烈鼓励学生和最近的博士生进行讲座。收件人。 这些会议汇集了微分方程研究的各个不同领域的工作者,重点是为新研究人员提供展示其工作的机会。 这些会议对年轻研究人员尤其有利,包括研究生和博士后。会议网站:http://www.msci.memphis.edu/confsymp.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gisele Goldstein其他文献
Gisele Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gisele Goldstein', 18)}}的其他基金
CBMS Conference:The Cahn-Hilliard Equation: Recent Advances and Applications
CBMS 会议:Cahn-Hilliard 方程:最新进展和应用
- 批准号:
1836403 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Southeastern-Atlantic Regional Conference on Differential Equations (SEARCDE)
东南大西洋地区微分方程会议 (SEARCDE)
- 批准号:
1434941 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Theory and Differential Equations
数学科学:算子理论和微分方程
- 批准号:
9403785 - 财政年份:1994
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
ARC Future Fellowships
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
- 批准号:
2345225 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Hadron-Hadron Interactions and Equation of State from High-Energy Nuclear Collisions
高能核碰撞的强子-强子相互作用和状态方程
- 批准号:
23H01173 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Loewner equation and Teichmueller space theory
Loewner 方程和 Teichmueller 空间理论
- 批准号:
23H01078 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new nuclear matter calculation method based on realistic nuclear forces and the effect of many-body terms on the equation of state
基于现实核力和多体项对状态方程影响的新核物质计算方法
- 批准号:
23K03397 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a dietary estimation equation MEMO, using microdata to estimate nutrient intake from sources other than meals
开发饮食估计方程 MEMO,使用微观数据来估计膳食以外来源的营养摄入量
- 批准号:
23K12696 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creation of low-noise quantum 3D imaging technique based on transport of intensity equation
基于强度传输方程的低噪声量子3D成像技术的创建
- 批准号:
23K17749 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
- 批准号:
2327836 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant














{{item.name}}会员




