Eighth Algorithmic Number Theory Symposium ANTS-VIII

第八届算法数论研讨会ANTS-VIII

基本信息

  • 批准号:
    0801165
  • 负责人:
  • 金额:
    $ 1.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-01 至 2009-04-30
  • 项目状态:
    已结题

项目摘要

The first Algorithmic Number Theory Symposium took place in May 1994 at Cornell University. In the preface to its proceedings, the organizers expressed the hope that the meeting would be "the first in a long series of international conferences on the algorithmic, computational, and complexity theoretic aspects of number theory." Since then, ANTS has been held bi-annually at varying locations all around the globe. The present meeting, ANTS-VIII, is scheduled to be held May 17-22, 2008 at the Banff Centre in Banff Alberta, Canada.The ANTS meetings are devoted to algorithmic and computational aspects of number theory, including elementary, algebraic, and analytic number theory, geometry of numbers, algebraic geometry, finite fields, and cryptography. There has been a surge of activity in number theory over the last 10-15 years, with major results in the areas of algebraic, arithmetic and analytic number theory. Many of these have additional significance due to their applications in areas such as coding theory and cryptography. The algorithmic side of number theory in particular has seen a great deal of progress in the last decade, including advances in such deep problems as integer factorization, the discrete logarithm problem in various settings, point counting on algebraic curves, and the computation of invariants of global fields. These and other related questions represent the subject of intense ongoing research, much of which is published in the ANTS proceedings. The aim of ANTS is to bring together leading experts in the field as well as young researchers and graduate students for the purpose of exchanging ideas and presenting their work. Research presented at ANTS meetings and appearing in ANTS proceedings has spawned important advances in algorithmic number theory. ANTS conferences, including ANTS-VIII in 2008, will continue to have a major positive impact and lead to significant progress in the field. The conference is geared toward researchers with some expertise in algorithmic number theory. Participants include senior and junior academics, members of government and corporate research facilities, and graduate students. The conference program will consist of five invited plenary talks and an expected 30-35 presentations by those researchers whose papers have been accepted for publication in the proceedings. This proposal seeks funds to support the travel and local expenses of about 7 conference participants who are US citizens or permanent residents. It is expected that participants who apply for NSF funding will give a presentation (a talk or poster) at the conference. Participants supported by this grant have not yet been chosen, but will be selected by the organizing committee based on applications which will be solicited as part of the registration process. Selection criteria will favor postdocs, graduate students, and faculty (especially junior faculty) without grant support, in essentially that order.
第一次数学数论研讨会于1994年5月在康奈尔大学举行。在会议记录的序言中,组织者表示希望这次会议将是“关于数论的算法、计算和复杂性理论方面的一系列国际会议中的第一次。“从那时起,ANTS每两年在地球仪的不同地点举行一次。 目前的会议,ANTS-八,定于2008年5月17日至22日在班夫中心在班夫阿尔伯塔,加拿大ANTS会议致力于算法和计算方面的数论,包括初等,代数和解析数论,几何的号码,代数几何,有限域和密码学。在过去的10-15年里,数论的活动激增,在代数,算术和解析数论领域取得了重大成果。 由于它们在编码理论和密码学等领域的应用,其中许多具有额外的意义。特别是数论的算法方面在过去十年中取得了很大的进展,包括整数分解等深层次问题的进展,各种设置中的离散对数问题,代数曲线上的点计数,以及全局域不变量的计算。这些问题和其他相关问题代表了正在进行的密集研究的主题,其中大部分发表在ANTS会议记录中。ANTS的目的是汇集该领域的主要专家以及年轻的研究人员和研究生,以交流思想和介绍他们的工作。在ANTS会议上提出的研究和出现在ANTS程序中产生了算法数论的重要进展。ANTS会议,包括2008年的ANTS-VIII会议,将继续产生重大的积极影响,并导致在该领域取得重大进展。 该会议面向在算法数论方面具有一定专业知识的研究人员。参与者包括高级和初级学者,政府和企业研究机构的成员,以及研究生。会议计划将包括五个邀请的全体会议和预期的30-35个报告,由那些论文已被接受在会议录中发表的研究人员。 该提案寻求资金,以支持约7名美国公民或永久居民的与会者的旅行和当地费用。 预计申请NSF资助的参与者将在会议上发表演讲(演讲或海报)。 由该赠款支持的参与者尚未被选中,但将由组委会根据申请进行选择,这些申请将作为注册过程的一部分征求。 选择标准将有利于博士后,研究生和教师(特别是初级教师)没有补助金的支持,基本上是这样的顺序。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Holden其他文献

Some heuristics and results for small cycles of the discrete logarithm
离散对数小循环的一些启发法和结果
  • DOI:
    10.1090/s0025-5718-05-01768-0
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Holden;P. Moree
  • 通讯作者:
    P. Moree
First-hit analysis of algorithms for computing quadratic irregularity
二次不规则度计算算法的首次命中分析
  • DOI:
    10.1090/s0025-5718-03-01593-x
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Joshua Holden
  • 通讯作者:
    Joshua Holden
Music by the numbers: frompythagoras to Schoenberg: Eli Maor, Princeton University Press, Princeton, NJ, 2018, 176 pp, Hardcover, (US)$24.95, ISBN-13: 9780691176901.
数字音乐:从毕达哥拉斯到勋伯格:Eli Maor,普林斯顿大学出版社,新泽西州普林斯顿,2018 年,176 页,精装本,(美国)24.95 美元,ISBN-13:9780691176901。
Distribution of values of real quadratic zeta functions
实二次 zeta 函数值的分布
Resource guide for teaching post-quantum cryptography
后量子密码学教学资源指南
  • DOI:
    10.1080/01611194.2022.2078077
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Joshua Holden
  • 通讯作者:
    Joshua Holden

Joshua Holden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Holden', 18)}}的其他基金

REU Site: Rose-Hulman Undergraduate Research Experience in Mathematics
REU 网站:Rose-Hulman 数学本科生研究经验
  • 批准号:
    1003924
  • 财政年份:
    2010
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: ANTS XVI: Algorithmic Number Theory Symposium 2024
会议:ANTS XVI:算法数论研讨会 2024
  • 批准号:
    2401305
  • 财政年份:
    2024
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Standard Grant
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
  • 批准号:
    EP/T017619/3
  • 财政年份:
    2022
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Fellowship
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
  • 批准号:
    EP/T017619/2
  • 财政年份:
    2021
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Fellowship
ANTS XIV: Algorithmic Number Theory Symposium 2020
ANTS XIV:2020 算法数论研讨会
  • 批准号:
    1946311
  • 财政年份:
    2020
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Standard Grant
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
  • 批准号:
    EP/T017619/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Fellowship
Algorithmic Number Theory Symposium 2018
2018年算法数论研讨会
  • 批准号:
    1802687
  • 财政年份:
    2018
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Standard Grant
Topics in algorithmic and computational number theory
算法和计算数论主题
  • 批准号:
    7649-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Discovery Grants Program - Individual
Elementary, analytic, and algorithmic number theory: Research inspired by the mathematics of Carl Pomerance
初等数论、解析数论和算法数论:受 Carl Pomerance 数学启发的研究
  • 批准号:
    1502336
  • 财政年份:
    2015
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Standard Grant
Topics in algorithmic and computational number theory
算法和计算数论主题
  • 批准号:
    7649-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in algorithmic and computational number theory
算法和计算数论主题
  • 批准号:
    7649-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了