Collaborative Research: Coherent Spin Control in Microfabricated Semiconductor Geometries

合作研究:微加工半导体几何结构中的相干自旋控制

基本信息

  • 批准号:
    0801406
  • 负责人:
  • 金额:
    $ 59.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2013-10-31
  • 项目状态:
    已结题

项目摘要

Technical The past decade has witnessed rapid advances in the development of "semiconductor spintronics," an area of research that broadly aims to exploit electron spin for qualitatively new semiconductor device functionality of both semi-classical and quantum character. This collaborative project is aimed at harnessing recent fundamental discoveries in semiconductor spintronics (such as the spin Hall effect and the enhancement of spin coherence in micro-resonators) for the systematic control of coherent spin phenomena in micro-patterned semiconductor devices. We will develop static and dynamical electrical measurements of the spin Hall effect as well seek pathways for enhancing the magnitude of this phenomenon. We also intend to pursue investigations that explore the entanglement and coherent manipulation of spins in coupled optical microcavities, with the ultimate goal of coherently controlling a single spin. Finally, we will conduct experiments that exploit the exchange interaction across interfaces for coherent spin control in both paramagnetic and ferromagnetic semiconductor heterostructures. Methods of investigation include spatially-resolved femtosecond optical spectroscopies, variable-temperature magnetotransport, direct magnetization, scanning probe microscopies, molecular beam epitaxial growth, and submicron fabrication techniques. The project is an integrated effort between the two principal investigators, emphasizing fundamental discovery in condensed matter physics, but with a clear eye on phenomena that could be of potential importance for future information technologies. The project combines sophisticated measurement techniques with advanced materials engineering, thus providing cutting edge training in both fundamental physics and materials science for undergraduate and graduate students. Non-technical Contemporary information technology relies on the charge of electrons for computation (logic) and the magnetic properties called spin of electrons for permanent storage. The past decade has witnessed rapid advances in the development of "semiconductor spintronics," an area of research that broadly aims to integrate these traditionally separate functionalities. This proposal is aimed at the fundamental frontiers of semiconductor spintronics, where we seek to control the behavior of electron spin in microscopically patterned semiconductor chips. By exploiting the consequences of special relativity in solid state crystals, we will develop electrical means of probing and harnessing the "spin Hall effect," a contemporary spin analog of the classical Hall effect discovered over a century ago. Enhancing our fundamental understanding of the spin Hall effect may allow us to envision new classes of spintronic devices that exploit the non-intuitive laws of quantum physics for new types of logic without the need for magnetic fields or magnetic materials. We also intend to develop experiments that explore the quantum control of spins in finely tuned "micro-resonators," micron sized "boxes" that trap light and thus enhance its interaction with the spin of electrons. Our ultimate goal is the quantum mechanical control of a single electron spin in such boxes, enabling both computation and optical communication in a single device. Finally, we will develop experiments that exploit the interaction between magnetic ions and itinerant electrons across exquisitely designed interfaces. The project is an integrated effort between the two principal investigators, emphasizing fundamental discovery but with a clear eye on phenomena that could be of potential importance for future information technologies. The project combines sophisticated measurement techniques with advanced materials engineering, thus providing cutting edge training in both fundamental physics and materials science for undergraduate and graduate students.
技术过去十年见证了“半导体自旋电子学”发展的快速进步,该研究领域的广泛目标是利用电子自旋实现半经典和量子特性的新半导体器件功能。该合作项目旨在利用半导体自旋电子学的最新基本发现(如自旋霍尔效应和微谐振器中自旋相干性的增强),系统地控制微图案化半导体器件中的相干自旋现象。我们将发展自旋霍尔效应的静态和动态电学测量,并寻求增强这种现象的幅度的途径。我们还打算进行研究,探索耦合光学微腔中自旋的纠缠和相干操纵,最终目标是相干控制单个自旋。最后,我们将进行实验,利用跨界面的交换相互作用,在顺磁和铁磁半导体异质结构的相干自旋控制。研究方法包括空间分辨飞秒光谱、变温磁输运、直接磁化、扫描探针显微镜、分子束外延生长和亚微米制造技术。该项目是两位主要研究人员之间的综合努力,强调凝聚态物理学的基本发现,但对可能对未来信息技术具有潜在重要性的现象有着明确的关注。该项目将先进的测量技术与先进的材料工程相结合,从而为本科生和研究生提供基础物理和材料科学方面的尖端培训。当代信息技术依赖于电子的电荷进行计算(逻辑),以及被称为电子自旋的磁性用于永久存储。在过去的十年里,“半导体自旋电子学”的发展取得了迅速的进展,这是一个广泛的研究领域,旨在整合这些传统上独立的功能。这个建议是针对半导体自旋电子学的基本前沿,在那里我们试图控制微观图案化的半导体芯片中的电子自旋行为。通过利用固态晶体中狭义相对论的结果,我们将开发探测和利用“自旋霍尔效应”的电子手段,“自旋霍尔效应”是世纪前发现的经典霍尔效应的当代自旋模拟。增强我们对自旋霍尔效应的基本理解可能使我们能够设想新类别的自旋电子器件,这些器件利用量子物理学的非直观定律来实现新型逻辑,而不需要磁场或磁性材料。我们还打算开发实验,探索在微调的“微谐振器”中对自旋的量子控制,微谐振器是微米大小的“盒子”,可以捕获光,从而增强光与电子自旋的相互作用。我们的最终目标是在这样的盒子中对单个电子自旋进行量子力学控制,从而在单个设备中实现计算和光通信。最后,我们将开发实验,利用磁性离子和巡回电子之间的相互作用,通过精心设计的接口。该项目是两位主要研究人员的综合努力,强调基础发现,但对可能对未来信息技术具有潜在重要性的现象有着清晰的认识。该项目将先进的测量技术与先进的材料工程相结合,从而为本科生和研究生提供基础物理和材料科学方面的尖端培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nitin Samarth其他文献

Tetradymites as thermoelectrics and topological insulators
四元硫属化物作为热电材料和拓扑绝缘体
  • DOI:
    10.1038/natrevmats.2017.49
  • 发表时间:
    2017-09-05
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Joseph P. Heremans;Robert J. Cava;Nitin Samarth
  • 通讯作者:
    Nitin Samarth
Magnetic manipulations
磁性操作
  • DOI:
    10.1038/442359a
  • 发表时间:
    2006-07-26
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Nitin Samarth
  • 通讯作者:
    Nitin Samarth
Magnetism in flatland
平面国的磁力
  • DOI:
    10.1038/546216a
  • 发表时间:
    2017-06-08
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Nitin Samarth
  • 通讯作者:
    Nitin Samarth
Quantum materials discovery from a synthesis perspective
从合成角度看量子材料的发现
  • DOI:
    10.1038/nmat5010
  • 发表时间:
    2017-10-25
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Nitin Samarth
  • 通讯作者:
    Nitin Samarth
Ruled by a magnetic-rich minority
由一个富有磁性的少数群体统治
  • DOI:
    10.1038/nmat1918
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Nitin Samarth
  • 通讯作者:
    Nitin Samarth

Nitin Samarth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nitin Samarth', 18)}}的其他基金

Many-Body Physics of Fermions in One Dimension
一维费米子的多体物理
  • 批准号:
    1607648
  • 财政年份:
    2016
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Coherent Manipulation and Transfer of Quantum Information amongst Single Spin Systems
合作研究:单自旋系统之间量子信息的相干操纵和传输
  • 批准号:
    1306510
  • 财政年份:
    2013
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Coherent Dynamics of Electrons, Ions, and Nuclei in Confining Geometries
合作研究:限制几何中电子、离子和原子核的相干动力学
  • 批准号:
    0305238
  • 财政年份:
    2003
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Collective and Coherent Spin Organization in Magnetic Semiconductor Nanostructures
合作研究:磁性半导体纳米结构中的集体相干自旋组织
  • 批准号:
    0071977
  • 财政年份:
    2000
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Spin Coherence and Quantum Transport in Magnetic Nanostructures
磁性纳米结构中的自旋相干性和量子传输
  • 批准号:
    9701484
  • 财政年份:
    1997
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Femtosecond Spin Dynamics in Magnetic Semiconductor Quantum Structures
磁性半导体量子结构中的飞秒自旋动力学
  • 批准号:
    9500460
  • 财政年份:
    1995
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312994
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
  • 批准号:
    2307395
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
  • 批准号:
    2307394
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312995
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312996
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Reaping the Whirlwind: Re-energizing Boundary Layers by Targeted Manipulation of Coherent Structures
合作研究:收获旋风:通过有针对性地操纵相干结构来重新激活边界层
  • 批准号:
    2129494
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum-Coherent Interactions between Free and Guided Electrons and Photons
合作研究:自由电子和引导电子与光子之间的量子相干相互作用
  • 批准号:
    2110535
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantum-Coherent Interactions between Free and Guided Electrons and Photons
合作研究:自由电子和引导电子与光子之间的量子相干相互作用
  • 批准号:
    2110556
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Reaping the Whirlwind: Re-energizing Boundary Layers by Targeted Manipulation of Coherent Structures
合作研究:收获旋风:通过有针对性地操纵相干结构来重新激活边界层
  • 批准号:
    2129493
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
The collaborative research on the development of class lessons and curriculum coherent from elementary to secondary mathematics in terms of the linkage between plane and spatial geometry
平面与空间几何之间联系的小学至中学数学课堂课程和课程开发的协作研究
  • 批准号:
    20H01745
  • 财政年份:
    2020
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了