IGERT: Modeling Complex Systems - The Scientific Basis of Coupling Multi-Physics Models at Different Scales

IGERT:复杂系统建模 - 不同尺度下多物理模型耦合的科学基础

基本信息

  • 批准号:
    0801471
  • 负责人:
  • 金额:
    $ 300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The need for accurate computational models for systems such as turbulent transport, mechanics of complex structures, and global climate change have far outpaced the growth of computing power, requiring the development of new approaches. This Integrative Graduate Education and Research Traineeship (IGERT) award will address this challenge through graduate research and training in a unified setting of science-based coupling of models across scales and disciplines. Specifically, the focus will be on tools used to describe phenomena that are not fully calculable in models using fundamental scientific principles. A large body of literature exists describing parameterized descriptions applied to specific physical processes. However, little knowledge is available on general cross-application guiding principles for science-based parameterization. The goal of this work is to develop science-based model coupling as a roadmap to guide the practice of computational modeling in science and engineering. The education plan will train a cadre of Ph.D. students who will lead the application of these techniques in industry, academia and national laboratories. Four education and training goals will be addressed: (1) Enable students to work in a multi-disciplinary setting; (2) Develop students to be leaders in science and engineering; (3) Establish and maintain a career-long network for students; (4) Expand the U.S. Ph.D. student base by targeting students at women?s colleges and universities with a large percentage of first-generation college students. Every member of society is affected by decisions or predictions based on computational simulations of critical processes, such as energy production, environmental protection, and infrastructural integrity. The research conducted through the proposed IGERT will address these important problems by providing new paradigms for computational modeling. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
对湍流传输、复杂结构力学和全球气候变化等系统的精确计算模型的需求远远超过了计算能力的增长,需要开发新的方法。这一综合性研究生教育和研究培训奖(IGERT)将通过研究生研究和培训来应对这一挑战,在统一的基于科学的跨规模和跨学科模型耦合的背景下进行培训。具体地说,重点将放在用于描述在使用基本科学原理的模型中无法完全计算的现象的工具上。大量文献描述了应用于特定物理过程的参数描述。然而,关于以科学为基础的参数化的一般交叉应用指导原则的知识很少。这项工作的目标是发展以科学为基础的模型耦合,作为指导科学和工程中计算建模实践的路线图。该教育计划将培养一批博士生,他们将领导这些技术在工业、学术界和国家实验室的应用。将实现四个教育和培训目标:(1)使学生能够在多学科环境中工作;(2)将学生培养成科学和工程领域的领导者;(3)为学生建立和维护一个长期的职业网络;(4)通过面向女性-S学院和大学的第一代大学生比例较大的学生来扩大美国博士生基础。每个社会成员都受到基于对关键过程的计算模拟的决策或预测的影响,如能源生产、环境保护和基础设施完整性。通过拟议的IGERT进行的研究将通过为计算建模提供新的范例来解决这些重要问题。IGERT是一个NSF范围内的项目,旨在应对培养具有跨学科背景、所选学科的深厚知识以及满足未来职业需求所需的技术、专业和个人技能的美国博士科学家和工程师的挑战。该项目旨在通过建立创新的研究生教育和培训新模式,在超越传统学科界限的合作研究的肥沃环境中,催化研究生教育的文化变革。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lori Graham-Brady其他文献

Correction: Materials laboratories of the future for alloys, amorphous, and composite materials
  • DOI:
    10.1557/s43577-025-00884-0
  • 发表时间:
    2025-02-28
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Sarbajit Banerjee;Y. Shirley Meng;Andrew M. Minor;Minghao Zhang;Nestor J. Zaluzec;Maria K.Y. Chan;Gerald Seidler;David W. McComb;Joshua Agar;Partha P. Mukherjee;Brent Melot;Karena Chapman;Beth S. Guiton;Robert F. Klie;Ian D. McCue;Paul M. Voyles;Ian Robertson;Ling Li;Miaofang Chi;Joel F. Destino;Arun Devaraj;Emmanuelle A. Marquis;Carlo U. Segre;Huinan H. Liu;Judith C. Yang;Kasra Momeni;Amit Misra;Niaz Abdolrahim;Julia E. Medvedeva;Wenjun Cai;Alp Sehirlioglu;Melike Dizbay-Onat;Apurva Mehta;Lori Graham-Brady;Benji Maruyama;Krishna Rajan;Jamie H. Warner;Mitra L. Taheri;Sergei V. Kalinin;B. Reeja-Jayan;Udo D. Schwarz;Sindee L. Simon;Craig M. Brown
  • 通讯作者:
    Craig M. Brown
Effect of sample size on the maximum value distribution of fatigue driving forces in metals and alloys
  • DOI:
    10.1016/j.ijfatigue.2023.107853
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammadreza Yaghoobi;Krzysztof S Stopka;David L McDowell;Lori Graham-Brady;Kirubel Teferra
  • 通讯作者:
    Kirubel Teferra
Review of the concept of variability response function and its application in stochastic systems
变异性响应函数概念的回顾及其在随机系统中的应用
  • DOI:
    10.1016/j.ress.2025.111180
  • 发表时间:
    2025-12-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    George Deodatis;Sanjay Arwade;Lori Graham-Brady;Kirubel Teferra
  • 通讯作者:
    Kirubel Teferra
Materials laboratories of the future for alloys, amorphous, and composite materials
  • DOI:
    10.1557/s43577-024-00846-y
  • 发表时间:
    2025-01-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Sarbajit Banerjee;Y. Shirley Meng;Andrew M. Minor;Minghao Zhang;Nestor J. Zaluzec;Maria K.Y. Chan;Gerald Seidler;David W. McComb;Joshua Agar;Partha P. Mukherjee;Brent Melot;Karena Chapman;Beth S. Guiton;Robert F. Klie;Ian D. McCue;Paul M. Voyles;Ian Robertson;Ling Li;Miaofang Chi;Joel F. Destino;Arun Devaraj;Emmanuelle A. Marquis;Carlo U. Segre;Huinan H. Liu;Judith C. Yang;Kasra Momeni;Amit Misra;Niaz Abdolrahim;Julia E. Medvedeva;Wenjun Cai;Alp Sehirlioglu;Melike Dizbay-Onat;Apurva Mehta;Lori Graham-Brady;Benji Maruyama;Krishna Rajan;Jamie H. Warner;Mitra L. Taheri;Sergei V. Kalinin;B. Reeja-Jayan;Udo D. Schwarz;Sindee L. Simon;Craig M. Brown
  • 通讯作者:
    Craig M. Brown
Data-driven prediction of extreme value distributions of finite-length random processes with application to fiber strength statistics
  • DOI:
    10.1016/j.cma.2024.117431
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lori Graham-Brady;Jamey Hogarth;Iason Papaioannou
  • 通讯作者:
    Iason Papaioannou

Lori Graham-Brady的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lori Graham-Brady', 18)}}的其他基金

Collaborative Research Strain-rate Dependent Properties of Cement-Based Materials: A Multi-Scale Experimental and Modeling Effort
水泥基材料的应变率相关特性的协作研究:多尺度实验和建模工作
  • 批准号:
    0969972
  • 财政年份:
    2010
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Stochastic Structural Stability
随机结构稳定性
  • 批准号:
    0528318
  • 财政年份:
    2005
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
Workshop: Probability and Materials - from Nano- to Macro-Scale
研讨会:概率与材料 - 从纳米到宏观
  • 批准号:
    0352038
  • 财政年份:
    2003
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: Theoretical, Experimental, and Stochastic Multi-Scale Analysis of Concrete
协作研究:混凝土的理论、实验和随机多尺度分析
  • 批准号:
    0301495
  • 财政年份:
    2003
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Analysis and design of material microstructure using stochastic simulation techniques
合作研究:使用随机模拟技术分析和设计材料微观结构
  • 批准号:
    0084533
  • 财政年份:
    2000
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
PECASE: Micro-Scale Based Reliability Analysis of Mechanical and Flow-Related Behavior of Heterogeneous Materials for Macro-Scale Infrastructure and Geotechnical Applications
PECASE:针对宏观基础设施和岩土应用的异种材料的机械和流动相关行为的基于微尺度的可靠性分析
  • 批准号:
    0049067
  • 财政年份:
    2000
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
PECASE: Micro-Scale Based Reliability Analysis of Mechanical and Flow-Related Behavior of Heterogeneous Materials for Macro-Scale Infrastructure and Geotechnical Applications
PECASE:针对宏观基础设施和岩土应用的异种材料的机械和流动相关行为的基于微尺度的可靠性分析
  • 批准号:
    9875516
  • 财政年份:
    1999
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Influence of Random Microstructure on Stress Concentrations in Functionally Graded Composites
功能梯度复合材料中随机微观结构对应力集中的影响
  • 批准号:
    9812992
  • 财政年份:
    1998
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Applying a complex systems perspective to investigate the relationship between choreography and agent-based modeling as tools for scientific sense-making
应用复杂系统的视角来研究编排和基于代理的建模之间的关系,作为科学意义构建的工具
  • 批准号:
    2418539
  • 财政年份:
    2024
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Improving Students’ Modeling Skills for Engineering Complex Systems
提高学生工程复杂系统的建模技能
  • 批准号:
    2235999
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
  • 批准号:
    2238359
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Modeling Complex Functional Data and Random Objects in Metric Spaces
在度量空间中对复杂函数数据和随机对象进行建模
  • 批准号:
    2311035
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234031
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Combining Absolute Quantitative Cross-Linking Mass Spectrometry and Molecular Modeling for Probing PROTAC-Mediated Ternary Complex Structures
结合绝对定量交联质谱和分子建模来探测 PROTAC 介导的三元复杂结构
  • 批准号:
    10572720
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了